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Abstract of the Dissertation

Heavy quark production
in variable flavor number schemes

by
Anton Alexeevich Chuvakin
Doctor of Philosophy
in
Physics
State University of New York at Stony Brook

2001

The dissertation deals with the calculation of heavy flavor par-
ton densities and deep inelastic structure functions. The three fla-
vor parton densities are evolved from a small value of the scale u?
up to the heavy quark threshold where the heavy quark densities
are generated using the leading, next-to-leading or next-to-next-to
leading order matching conditions. These densities are then used
to compute the heavy quark structure functions Fy g(z,@?*) and
Fr g(z,Q?*) for charm and bottom quarks in both fixed order per-

turbation theory and in variable flavor number schemes (VFNS).
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The question of choosing the best VENS scheme is discussed. A
comparison with the recent experimental data from the ZEUS and

H1 experiments at DESY, Hamburg is provided.
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Figure Captions

2.1. The gluon density zgnnLo(4, z, ?) in the range 107> < x < 1 for

p?=2,3,4,5,10 and 20 in units of (GeV?)2.

2.2. The singlet density XxNpo(4, @, #?) in the range 107° < x < 1 for

p?=2,3,4,5,10 and 20 in units of (GeV?)2.

2.3. The nonsinglet quark density zonnLo(4,z, #?)a, where o = (u +
%)/2, in the range 107° < z < 1 for p? = 2, 3,4, 5, 10 and 20 in units of
(GeV?)2,

2.4. The charm quark density zennpo(4, , p?) the range 107° < z < 1

for u? = 1.96, 2, 3, 4, 5, 10 and 20 in units of (GeV?)2.

3.1. (a) The charm quark density zexnpo(4, @, 4?) the range 107° < z <
1 for pu? = 1.96, 2, 3, 4, 5, 10 and 20 in units of (GeV/c*)?, (b) similar
plot as in (a) but now for 0.01 < z < 1, (c) ratios RNNKO(z, %) =
zegvorven (4, @, p?) /xepopr (4, x, u?) for the same scales, (d) and (e) the

NLO results from MRST98 set 1 and CTEQHHQ respectively.

3.2. (a) The gluon density xgxnLo(4, , #*) in the range 107° < z < 1 for
©* =2,3,4,5,10 and 20 in units of (GeV/c*)?, (b) ratios RgNNLO (x,p1?) =
rgevowvep (4, z, p?)/xgropr (4, x, u?) for the same scales, (c) the three-
flavor NLO gluon density in the same range, (d) and (e) the NLO results

from MRST98 set 1 and CTEQ5HHQ respectively.
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3.3. (a) The singlet density zXxnLo(4,z,4?) in the range 107° < z <
1 for > =2, 3, 4, 5, 10 and 20 in units of (GeV/c*)?, (b) ratios
RYNYO (2, 4?) = z¥pvorven (4, ¢, p?) [z ¥popr(4, z, u?) for the same scales,

(c) the three-flavor NLO density.

3.4. (a) The nonsinglet quark density zoxnLo (4, , #*) in the range 107° <
< 1 for p?> = 2,3, 4,5, 10 and 20 in units of (GeV/c*)?, (b) ra-

tios R?NLO

(z,u?) = zopvowvep (4, z, u?)/zopopr (4, x, u?) for the same

scales, (c) the three-flavor NLO density.

3.5. (a) The strange quark density zsynLo(4, z, #?) in the range 107° <
x < 1for p2 = 2,3, 4,5, 10 and 20 in units of (GeV/c*)?, (b) ratios
R1S\TNLO($7 1?) = zegvowvep (4, @, u?)/zcropr (4, , p*) for the same scales,

(c) the three-flavor NLO density.

3.6. (a) The bottom quark density xbynno(5, x, #?) in the range 107° <
z < 1 for p* = 20.25, 25, 30, 40 and 100 in units of (GeV/cz)Q, (b)

Rlb\TNLO (

similar plot as in (a) but now for 0.01 < = < 1, (¢) ratios z,p?) =

zbgvorvenp (4, ©, u?)/xbropr (4, x, u?) for the same scales, (d) and (e) the

NLO results from MRST98 set 1 and CTEQ5HHQ respectively.

3.7. (a) The charm quark density zexnLo(5, z, 4?) in the range 107° <
x < 1 for p? = 20.25, 25, 30, 40 and 100 in units of (GeV/c*)?, (b) and

(c) the NLO results from MRST98 set 1 and CTEQ5HQ respectively.

3.8. (a) The gluon density zgnnLo (5, , #?) in the range 107° < z < 1 for

(* = 20.25, 25, 30, 40 and 100 in units of (GeV/c*)?, (b) the three-flavor
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NLO density.

3.9. (a) The singlet quark density xXxnLo(5, z, #?) in the range 107° <
x < 1 for p? = 20.25, 25, 30, 40 and 100 in units of (GeV/c*)?, (b) the

three-flavor NLO density.

3.10. (a) The nonsinglet density zoxnLo (5, z, #*) in the range 107° <
x < 1 for p? = 20.25, 25, 30, 40 and 100 in units of (GeV/c*)?, (b) the

three-flavor NLO density.

3.11. (a) The strange quark density zsxnLo (5, z, #?) in the range 107° <
x < 1 for p? = 20.25, 30, 40 and 100 in units of (GeV/cQ)Q, (b) the three-

flavor NLO density.

4.1. The lowest-order photon-gluon fusion process v* + ¢ — @Q + Q

contributing to the coefficient functions HS;](I).

4.2. Some virtual gluon corrections to the process v* + ¢ — Q + Q
S,(2)

contributing to the coefficient functions H;

4.3. The bremsstrahlung process v* + ¢ — Q + @Q + ¢ contributing to
5,(2)

the coeflicient functions H,

4.4. The Bethe-Heitler process v* + ¢(¢) — Q + Q + ¢(g) contributing
PS,(2)

to the coefficient functions H,

. The light quarks ¢ and the heavy

quarks ) are indicated by dashed and solid lines respectively.

4.5. The Compton process v*+ ¢q(q) — Q + @ + q(q) contributing to the

NS,(2)
1,9

coefficient functions L . The light quarks ¢ and the heavy quarks

xii



@ are indicated by dashed and solid lines respectively (s = (p + ¢),

sgg = (p1 + p2)? see text).

Fig. 4.6. The two-loop vertex correction to the process v* 4+ ¢ — ¢ contain-
ing a heavy quark (Q) loop. It contributes to CX;RT’NS’(:))(QQ/mQ) =

FO(Q?* fm?) ).

Fig. 4.7. Order a; corrections to the process v* 4+ ) — () and the reaction

v 4+ @ — @ + g contributing to the coefficient functions HES’(I).

Fig. 4.8. The § = (A—4m?)/(s—4m?*) dependence of :EL;(;FT’NS’(Q)(L Q*/m?, A)
at Q*/m* =50 (Eq. (A.2)) plotted as a function of « for § = 1, 0.1, 0.01

and 0.001 respectively.

Fig. 4.9. (a) The charm density ™9 (4, z, %) shown in the range 107° <
x < 1 for p* = 1.96, 2, 3, 4, 5, 10 and 100 in units of (GeV/c)% (b)
similar plot as in (a) but now for 0.01 < z < 1. For a comparison we
have also shown the NLO results obtained by MRST98 and CTEQ5HQ

for the range 107° < < 1 in (c) and (d) respectively.

Fig. 4.10. Ratios R(x, p?) = xcBVOWVED (4 & 1?)/x O (4, 2, u?) for the scales

p? =2,3,4,5,10, 100 in units of (GeV/c)?. (a) LO, (b) NLO, (c) NNLO.

Fig. 4.11. The charm quark structure functions F?X4“% (ny = 3) (solid line)
FQ(?CSN(nf = 4), (dot-dashed line) Frfiv[SN(nf = 4), (dashed line) and
F;?F(nf = 4), (dotted line) in NNLO for = 0.05 plotted as functions

of Q2.
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4.12. Same as in Fig. 4.11 but now for x = 0.005.

4.13. The charm quark structure functions FFAAT (ny = 3) (solid line)
FEN(ny = 4), (dot-dashed line) FP¥N(n; = 4), (dashed line) and
FEEF(nf = 4), (dotted line) in NNLO for = 0.05 plotted as functions
of Q2.

4.14. Same as in Fig. 4.13 but now for x = 0.005.

4.15. The charm quark structure functions FQ]?iVISN(nf = 4) in NLO

(solid line), NNLO (dotted line) for z = 0.05 and F5>N(ns = 4) in NLO

(dashed line), NNLO (dot-dashed line) for = 0.05 plotted as functions
of Q2.

4.16. Same as in Fig. 4.15 but now for x = 0.005.

4.17. The charm quark structure functions FPYSN(n; = 4) in NLO
(solid line), NNLO (dotted line) for = 0.005 and FISEN(nf = 4) in
NLO (dashed line), NNLO (dot-dashed line) for x = 0.05 plotted as

functions of Q2.
4.18. Same as in Fig. 4.17 but now for x = 0.005.

5.1. The bottom quark structure functions F734%T (ny = 4) (solid line)
FipN(ng = 5), (dot-dashed line) FPMN(n; = 5), (dashed line) and
F;?F(nf = 5), (dotted line) in NNLO for = 0.05 plotted as functions

of Q2.

5.2. Same as in Fig. 5.1 but now for = 0.005.
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ny =4) (solid line)

5.3. The bottom quark structure functions FE%(ACT(
FEN(ny = 5), (dot-dashed line) FPN(ny = 5), (dashed line) and
FEP¥(ns = 5), (dotted line) in NNLO for & = 0.05 plotted as functions

of Q2.
5.4. Same as in Fig. 5.3 but now for = 0.005.

5.5. The bottom quark structure functions FPM*N(ny = 5) in NLO
(solid line), NNLO (dotted line) and FQ%SN(nf = 5) in NLO (dashed

line), NNLO (dot-dashed line) for = 0.05 plotted as functions of Q.
5.6. Same as in Fig. 5.5 but now for = 0.005.

5.7. The bottom quark structure functions FP}'*(n; = 5) in NLO
(solid line), NNLO (dotted line) and F3N(ny = 5) in NLO (dashed

line), NNLO (dot-dashed line) for z = 0.05 plotted as functions of Q.
5.8. Same as in Fig. 5.7 but now for = 0.005.

5.9. The bottom quark structure functions Fy¥4T (ny = 4) (solid line)
FiN(ng = 5), (dot-dashed line) FPMN(ny = 5), (dashed line) and
FyPF(ng = 5), (dotted line) in NNLO for Q% = 30 (GeV /c)? plotted as

functions of z.
5.10. Same as in Fig. 5.9 but now for Q? = 100 (GeV/c)?.

5.11. The bottom quark structure functions F3A“T (ny = 4) (solid line)

FEN(ny = 5), (dot-dashed line) FPN(n; = 5), (dashed line) and
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FPP¥(ng = 5), (dotted line) in NNLO for Q% = 30 (GeV /c)? plotted as

functions of z.

5.12. Same as in Fig. 5.11 but now for Q* = 100 (GeV/c)*.
5.13. Same as in Fig. 5.1 but now for x =5 x 107°.

5.14. Same as in Fig. 5.3 but now for x =5 x 107°.

5.15. Same as in Fig. 5.5 but now for x =5 x 107°.

5.16. Same as in Fig. 5.7 but now for x =5 x 107°.

5.17. The bottom quark structure function FE%(ACT(nf = 4) (solid line)
FE%N(nf = 5), (dot-dashed line) together with the NLO charm density
piece Term1 (dotted line) and the LO gluon density piece Term?2 (dashed

line), see text, for x =5 x 107° plotted as functions of Q*.

5.18. The bottom quark structure function FF3*“T(ny = 4) (solid line)

FEN(ny = 5), (dot-dashed line) together with the NLO charm den-
sity piece Terml1 (dotted line) and the NLO gluon density piece Term2

(dashed line), see text, for x = 5 x 107° plotted as functions of Q*.

6.1. The ratio o(cuts)/a(no cuts) for the acceptance in Q* plotted ver-

sus log,,Q*.

6.2. The ratio o(cuts)/o(no cuts) for the acceptance in  plotted versus

log,y.

xXVi



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

6.3. The combined Osaka H1 and ZEUS and published ZEUS data for
do/dlog,,@Q* in nb for deep inelastic production of D** mesons. The
dashed line is the NLO EXACT result from HVQDIS, (which coincides
with the FOPT result), the dotted line is the result from the BMSN

scheme and the dot-dashed line is the result from the CSN scheme.
6.4. Same as Fig. 3 displayed on a semi-logarithmic plot.

6.5. The Osaka ZEUS data for do/dlog,,x in nb for deep inelastic pro-
duction of D** mesons. The dashed line is the NLO EXACT result from
HVQDIS, (which coincides with our FOPT result), the dotted line is the
result from the BMSN scheme and the dot-dashed line is the result from

the CSN scheme.
6.6. Same as Fig. 5 displayed on a semi-logarithmic plot.

6.7. The ratio o(cuts)/o(no cuts) for the acceptance in  plotted versus

log,y.

6.8. The published ZEUS data for do/dlog,,x in nb for deep inelastic

production of D** mesons. The notation follows Fig. 6.5.
6.9. Same as Fig. 6.8 displayed on a semi-logarithmic plot.

6.10. Ratio of the double differential cross sections in log,,@* and log,,z
for the BMSN scheme divided by the FOPT result. The contour lines
are for the ratio 1, 1.5, 2, 2.5 and 3 in the order of increasing )* for fixed

Z.
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Chapter 1

Introduction

1.1 Introduction

The concept of quarks was introduced into physics by Gell-Mann and
Zweig in 1964 [1] before the first evidence for proton and neutron internal
structure was discovered in experiments at the Stanford Linear Accelerator

Center (SLAC) [2] late in the 1960s.

Quarks were used to classify the huge number of “elementary” particles
that were discovered in the 1950s using high-energy particle accelerators and
detectors. As the energy of the accelerators increased so did the masses of
particles found, up to several times the proton mass. Most particles that were
discovered belonged to groups of “hadrons” (strongly interacting particles).
The attempts to classify hadrons into some sort of “Mendeleev periodic table”
failed, so theorists started to look for a more fundamental picture. This led
to the SU(3) (flavor) quark model where u,d and s (up, down and strange)
quarks together with their anti-particles were used to build up the multiplets
of hadrons. Quarks are fermions that is they have spin 1/2. The 2-baryon
consisting of 3 s quarks with total spin 3/2 was actually predicted several
years before it was discovered. A wave function for three identical quarks with
spin 1/2 in the same state violates the Pauli exclusion principle for fermions.
The unusual composition of the particle was solved by the addition of a new
“color” quantum number.

After many experiments it became clear that quarks cannot be observed
directly. Since hadrons carry no color quantum number they are defined to be
“white” (either by combining quarks of all primary colors - red, green, blue in
baryons or by combining color and anti-color quarks in mesons). The precise
reasons why quarks are not observed outside of hadrons were proposed much
later.



The SLAC experiments (deep inelastic scattering of electrons on protons)
revealed that protons contain point-like objects of spin 1/2. “Deep” in the
previous sentence refers to the large virtuality of Q* (the four-momentum
squared of the virtual photon exchanged between the incoming electron and
target proton) which allowed the probe to penetrate deep within the hadron.
Later the partons were identified with the quarks (and gluons) of an SU(3)
(color) gauge theory introduced by Gell-Mann, Fritzsch and Leutwyler [3]. The
u and d quarks have constituent masses of about 150 MeV and the s about 300
MeV. However, it should be noted that since quarks are not observed outside
of hadrons their masses are only approximate (roughly one half the mass of
the meson containing them).

The quark table was later enlarged by the addition of the ¢ quark (charm,
discovered in the J/W particle containing c¢, 1974 [4]), the b quark (bottom,
discovered in Y meson containing bb, 1977 [5]) and the ¢ quark (top, discovered
at Fermilab in 1994, [6]). These “heavy” quarks were actually predicted by
the parton model prior to their experimental discovery to make the number of
quarks equal to the number of leptons.

Another important result of deep inelastic scattering (DIS) experiments
was that the measured cross-section was found to be essentially flat in @2, but
dependent upon the ratio x = Q?/2Mv where v is the energy loss between the
incoming and outgoing electron and M denotes the mass of the proton. The
x variable ranges between 0 and 1. This observation was called scaling (also
known as Bjorken scaling). This property was observed for 0.15 < = < 0.25
and 2 < % < 40 GeV? which was all the kinematic range of the experiments
in the 1960s.

In 1969 Feynman [7] proposed his parton model to explain the scaling
phenomenon. Partons were considered to be massless objects inside the pro-
ton that interacted with the photons and the total DIS cross-section was just
the incoherent sum of these individual cross-sections. In the large proton mo-
mentum p limit, z is the fraction of the proton longitudinal momentum carried
by each elastically scattered parton and the size of the cross-section is propor-
tional to the sum of probabilities of finding partons of corresponding type (up,
down, etc) with momentum xp within the proton [8]. This collision is assumed
to be completely unaffected by the presence of neighboring partons. These con-
stituents were assumed to have very small transverse momenta. Scaling was
later observed in all hard (large momentum transfer) scattering experiments.
The cross sections in the parton model are typically ([9]):

on(p.q) = [ oilep, )oim (2) da (1.11)



where p is hadron momentum, x is the fraction of x that the parton 2 carries,
oi(xp, q) is a parton level Born cross section and ¢; g () is a parton distribu-
tion function (PDF)which gives the probability to find a parton ¢ in a hadron
H carrying the fraction = of the momentum p.

Color was incorporated later when the parton model was extended into
quantum chromodynamics (QCD) which is an unbroken non-abelian (thus
allowing self-interaction of gluons) SU(3) (color) gauge theory with a running
coupling ag. There are three possible colors for quarks of six flavors and eight
color combinations for gluons.

In the years that followed significant progress was achieved in describing
the collision processes of partons especially with regard to the production of
jets of particles measured in hadronic reactions. This was possible due to two
important properties of QCD, namely asymptotic freedom and confinement.
Asymptotic freedom refers to the weakness of the interaction between quarks
at small distances (confirmed by measurements of scattering cross-sections at
large momentum transfer). This feature is explained by the behavior of the
QCD running coupling which is large at small momentum scales and small at
large momentum scales. Confinement refers to the increase of the interaction
strength between quarks at longer distances (leading to the non-existence of
free quarks). So the force between quarks is relatively weak at small distances
and grows as the distance increases. At some point it becomes energetically
more efficient to form a new bound state (a meson) rather than keep straining
the color bond between the quarks. This is exactly the opposite to what hap-
pens in QED where forces decrease with distance. The physical explanation
applied in QED is that a screening effect takes place and the interaction be-
tween, say, a pair of electrons becomes weaker as the distance increases. The
similar explanation of the growing coupling in QCD is based on the “param-
agnetism” analogy due to gluonic spin. The running coupling also depends
upon the number of quark flavors. That means that we have to distinguish
between a 3-flavor «; valid for small scales below the mass of the charm quark
and a 4-flavor ay, valid for larger scales.

Quark masses in QCD also depend upon the energy scale. Their running
follows from the renormalization group equation in a manner similar to the
running of the coupling ag.

The renormalization procedure removes ultraviolet (high energy) diver-
gences from a quantum field theory such as QCD. That procedure introduces
a renormalization scale, typically denoted by p. The physical meaning of this
scale can be viewed as the separation of the divergent energy range from the
rest of the calculation. The statement that a result for a physics quantity R is
independent of this arbitrary parameter u leads to the renormalization group



equation
prdR(Q% /1P, a,)/dy’® = (p*0/0u* + Bd/das)R =0 (1.1.2)

where 8 = p*das/du?, because the running coupling is a function of y?. This
is a partial differential equation which can be solved by standard methods.
Factorization is the property of QCD which allows the separation of the
long-distance (soft) processes, such as interaction of quarks within the hadron
from short-distance (hard) processes such as the electromagnetic or weak in-
teraction between the incoming high energy electrons and the quarks inside
the hadron. The factorization theorem was proven by Collins, Soper and
Sterman ([10]). It was based on QCD which elevates the parton model to a
field theory. The parton model corresponds to only incorporating tree level
graphs in the calculation (no loops). The charm quark density can be de-
scribed in terms of two structure functions F .(z, Q*) and Fp .(z,Q?), which
can then be written as convolutions (the convolution operation & is defined as
f@g=[fx/y)g(y)dy/y with z <y < 1) of coefficient functions with parton
density functions (PDFs). The most important applications of factorization

are ([9]):

e coefficient functions are infrared-safe (no collinear or soft divergences),
calculable in perturbative QCD and independent of long distance effects
such as the internal structure of the particular hadron. They can be
thought of as generalizations of partonic scattering cross-sections.

e every theoretically defined PDF is infrared-divergent (goes to infinity in
the soft and collinear region) and thus not calculable in perturbative
QCD. They are extracted from the experimental data. PDFs contain all
the information about quarks and gluons within the particular hadron
and are process-independent i.e. PDFs are the same for both DIS and
Drell-Yan processes.

The divergences that are moved from the partonic scattering cross-sections
into the PDFs can be of two different types: infrared (soft) and collinear. The
former occurs when gluon is emitted with very low energy, while the latter is
due to gluon emission parallel to the quarks with zero transverse momentum
kp [11].

Initially, due to the relatively large strength of strong interaction and
thus the large size of the running coupling ag the applicability of perturbation
theory to hadron processes was questioned. No small-parameter expansion
was thought possible. However in QCD there are reactions where ag is small



enough for the perturbation theory approach to work. This is still a subject
of considerable interest for theorists.
Perturbative QCD (pQCD) gives good predictions for three types of pro-

cesses:
e c¢Te™ annihilation, ete™ — X
e deep inelastic scattering (DIS), e7p — e~ X

e Drell - Yan production, pp — ete™ X

The process of eTe™ annihilation involves no quarks in the initial state and
can be used to measure fragmentation functions of quarks into hadrons. The
DIS process is ideal for QCD studies since it only has one hadron in the initial
state. Parton densities can be measured in DIS and Drell-Yan processes.

Parton distribution functions (PDFs) only have a clear physical meaning
in the Born approximation. They are interpreted as probabilities to find a
particular parton (quark or gluon) inside the hadron carrying the fraction z
of its momentum at the scale p?.

We summarize some of their properties:

e the PDFs are not physical. They depend upon the renormalization
scheme (for example, the modified minimum subtraction MS scheme)
and on the scale. One should convolute them with coefficient functions
(that are pQCD calculable) to get experimentally measurable quantities.

e the PDF's are not pQCD-calculable - they contain ‘soft* (low momentum
transfer) physics

e the PDFs can be expressed as matrix elements of number operators
between quark (and gluon) states in particular gauges

e the PDFs are universal (process-independent)

e the PDFs are subject to sum rules such as
1 _
| de (6upp (@) = dupp (2)) =2 (1.13)
1 -
| da (647 (@) = 6ujp (@) =1

and others which usually have higher order corrections in asg.



In order to perform rigorous calculations in pQCD the operator product
expansion formalism ([12]) is used for DIS. The formalism describes the par-
ton cross-sections in terms of matrix elements of composite operators taken
between parton states [11]. While we can write PDFs in terms of matrix
elements we cannot calculate such objects. They have to be obtained from ex-
perimental data. For example, DIS cross-sections depend on matrix elements
of the product of two electromagnetic currents between proton states. The
extraction of PDFs from the wide range of experimental data is sometimes
called “global analysis”.

In the 1970s the first deviations from the naive parton model predic-
tions were discovered experimentally. In contradiction to the expectations of
the parton model when ()? increased to a large value a small Q* dependence
appeared in the experimental data. The search for the possible explanation
began. It turns out that the parton transverse momentum is in fact not small.
For example a quark can emit a gluon and therefore acquire a large transverse
momentum so terms in In(Q?/u?) become visible at order as. That shows that
partons inside the proton are not behaving exactly like free particles. Also it
was noted that charged partons i.e. the quarks only account for about 50% of
the proton’s momentum. This demonstrated the existence of gluons (to carry
the rest of the momentum) which had previously been postulated to provide
the interaction between quarks. Using the renormalization group equation the
parton distributions are calculable at a given * from knowing them at an-
other (smaller or larger) Q?%; value as long as as is sufficiently small to be in
perturbative QCD region for both Q?, and Q*. The evolution is described by
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations
[13]. These equations can be directly derived from factorization (as in [11])
or from the renormalization group equation for the deep inelastic scattering
functions F,(z, p?) [9]. Each evolution equation has the following properties:

e it describes scale breaking by logarithms in g* which means that the par-
ton transverse momentum is not small as assumed in the parton model

e the sum in the equation is over all ‘active‘ flavors- ones that exist on the
current p? scale

The evolution kernels or splitting functions (since they describe the split-
ting of partons into other partons) P;;(z/y,as(u?)) are subject to symmetry
relations such as

PQi g3 = P(jl. q; (]‘]‘4)
PQi q; = Pjv. 93



qu‘g :Pq’z‘g:qu
PQQi =lygq :qu
(1.1.5)

that depend upon the order in perturbative QCD[11]. The physical interpre-
tation for the splitting functions P%,;(z) (only in leading order in ag) is that
they are probability functions to find a parton @ in a parton b with a fraction
x of the longitudinal momentum of a parent parton and transverse momentum
much less than p? [13].

There are separate evolution equations for the flavor singlet (that mix
with the gluon) and flavor non-singlet parton densities that are described in
more detail in Chapter 2.

A number of methods to solve the evolution equations have been proposed,
including direct z-space methods, Mellin-transform methods and orthogonal
polynomial methods. More details are given in Chapter 2.

So far we have only discussed inclusive processes. The measurements of
heavy quarks (namely ¢, b and t) require the detection of a final heavy quark
meson so it is called a single particle inclusive reaction. There are three main
approaches to the computation of heavy quark production in DIS:

e the three flavor number scheme - only three initial state PDF's are evolved
so the charm (and anticharm) are in the final state. Structure functions
for charm are calculated via the photon-gluon fusion process both on the
Born level and in higher orders of pQCD. For example, in LO:

Foele,Q%m2) = (as/20)C0,(Q*m?) @ (1) (1.1.6)

where Cél)(QQ/mCQ) is a coefficient function which is calculable in pQCD.
It is anticipated that this description fails at large * due to the pres-
ence of large logarithms so that asln((Q)?) is no longer small and we
cannot apply perturbation theory. However the exact impact of those
logarithms on physically measured quantities is not entirely clear due
to the convolution used in the calculation. This production mechanism
is sometimes is referred to as “extrinsic” charm production, in contrast
with “intrinsic” charm quarks existing in the hadron wave function.

e variable flavor number schemes (in particular the zero-mass VFNS)- all
quarks are taken to be massless, but massless charm only contributes
above a threshold scale so that its density c(z, p?) = ¢e/n(x, p?) is zero
for y* < m.2 The (massless) charm PDF is generated for p* > m.? via

the evolution equation with appropriate boundary conditions. In this



case charm structure functions are calculated using the charm parton
density. For example, in LO:

Fooz,Q%) = C @ ez, 1?) + C @ g(, u?) (1.1.7)

where ® denotes the convolution operation defined as above. Note that
the dependence on m. vanishes from F; . since charm is treated just
like a light quark density i.e. has zero mass. This is usually called
“intrinsic” charm production and the dominant mechanismis often called
flavor excitation. This scheme is inadequate in the threshold region
m? < Q* < 4m? where the three flavor scheme is superior.

e non-zero-mass VFNS - where the number of light flavors changes by
one unit while going from the threshold region for that parton flavor to
the asymptotic region and the heavy quark masses are retained in the
coefficient functions to improve the behavior near threshold.

This thesis deals with the construction of VFNS schemes and the compar-
ison of their predictions with experimental data for various regions of = and
(Q*. As was mentioned above there are three approaches to this problem.

The next to leading order (NLO) coefficient functions for the three fla-
vor number scheme were constructed by Laenen et al [14]. The first three
flavor densities were produced by Gliick, Reya and Vogt (in [15] and [16])
which allowed the reliable computation of heavy flavor cross-sections for wide
ranges of Q* and z in NLO perturbation theory. In this approach, initial
PDFs are chosen at some low scale (sometimes as low as 0.26 GeV?) and then
evolved upwards. Then they are convoluted with appropriate LO or NLO
coefficient functions to produce the charm structure functions F5 .(z, Q*) and
Fp.(z,Q?%). This approach requires careful selection of initial conditions and
evolution parameters such as the heavy quark mass m, and scale parameter A.
The number of flavors is kept fixed at all higher scales although the running
coupling does change around the b heavy flavor threshold. Calculations in this
scheme are conceptually simple however the inclusion of the higher order cor-
rections requires a lot of technical effort [17]. It is important to note that NLO
corrections are of the same order of magnitude as LO terms. This scheme also
exhibits a significant u scale dependence that does not always decrease with
order [18]. Also it is sometimes impossible to match the experimental data
over a wide region of x and ()* for any value of x [19]. This three flavor scheme
is considered to be the best scheme achievable in the low ()? region where ()?
is approximately equal to m.? (for charm production case) so there we can



ignore logarithmic terms in In(Q?*/m.*). Since most experimental data for
charm production is for much higher Q? some other method might be needed.

If we treat the charm quark in the same manner as all other (light) densi-
ties i.e. we assume that a massless charm density exists above its production
threshold and does not exist below the threshold we get the zero-mass VFNS.
This scheme is very easy to implement since the treatment of charm is the
same as other densities. In this case the number of flavors (called “number of
active flavors”) grows as the momentum transfer increases above the threshold.
The (supposedly) large logarithms in Q?/m.? are resummed in this case into
the evolution of the charm density. This scheme is unphysical in the region
of small ) (order of m.) where the structure functions £, usually become
negative.

The history of VFNS started with the paper of Aivazis, Collins, Olness
and Tung (ACOT) [20]. Their scheme implemented the leading order matching
condition between the regions of applicability of three and four flavor schemes.
The idea was to provide a scheme that coincides with the fixed flavor number
scheme for low ()%, approximates the behavior of zero-mass VFNS at high Q*
and has reasonable behavior in the intermediate region. ACOT only developed
their scheme for matching in the leading order (i.e. as'). Their four flavor
scheme was also leading order in ag. There have been attempts to improve
this by adding NLO vertex corrections such as in [18] and [21].

The method used by the CTEQ group ([22]) in their global analysis of
experimental data involves using the ACOT prescription [20] to fit structure
functions F .(x,Q?) and Fp.(x,Q?). This “global analysis” in perturbative
QCD allows them to produce consistent sets of parton densities and heavy
and light quark structure functions. The analysis includes processing the ever-
increasing amount of experimental data from a wide range of hard-scattering
processes and producing improved PDF sets which also serve to test pQCD
[22]. The CTEQ group has produced both fixed three and four flavor density
sets as well as VENS (using ACOT prescription) PDFs from fits to data from
the H1 and ZEUS experiments at HERA and from other experiments. The
emphasis is made on the precise extraction of the gluon density from the data
since heavy quark production in leading order (L.O) is determined only by the
gluon density.

A scheme proposed by Thorne and Roberts [23] uses the matching of
structure functions similar to the ACOT prescription, but adds a condition
that their derivatives in ) also match at the heavy flavor thresholds. The
matching used in their global analysis is performed also in leading order in ag
[24].

The above discussion demonstrates that there is no unique choice for a



precise scale where a massive three flavor scheme is replaced by a massless four
flavor scheme nor a unique method to connect them. The switching of scales
should not have any influence on the physically measurable results at higher
@* due to its arbitrary nature (in spite of the typical choice of m.?, the role
of the switching point is also studied in [25]).

The higher-order VFNS schemes presented in this dissertation aim to
increase the accuracy of pQCD predictions. The available schemes differ in the
choice of heavy quark masses, choice of ag, method and order of the threshold
treatment. Also the leading order schemes should be better at reproducing
certain experimental results. Unfortunately, at the time of this writing the
accuracy of the experimental data is still insufficient to make a definite choice
of the best VFNS scheme. We can however argue that our schemes provide the
best theoretical foundation for a pQCD description of heavy quark production
in DIS since they are higher order in asg.

Note that the NLO and NNLO threshold matching condition as well as
pieces of NNLO splitting functions are now available. Approximations to
NNLO splitting functions are developed ([26],[27]). Global analysis using LO,
NLO and NNLO densities was done by MRST ([28]). Although the full NNLO
splitting functions are not known yet this paper draws some conclusions about
the role of NNLO parton densities in heavy quark production.

The research presented in this thesis deals with the study of two VFNS
for heavy flavor (charm and bottom) electroproduction (via photons and not
W or Z bosons) and their application to computing total and differential cross-
sections in « and @* in higher orders (up to NNLO) of perturbation theory.

The first scheme further referred to as the BMSN scheme (Buza-Matiounine-

Smith-Neerven) [29], requires the asymptotic three flavor NLO coefficient func-
tions which manifest correct limiting behavior for high and low Q*. They are
extracted from an analysis of the three flavor structure functions for low )2
and four flavor massless coefficient functions for high Q2. In this way the
scheme gives an interpolation from low to high Q2. The scheme is based on an
all-orders proof of heavy quark factorization presented in [29] and more details
are given [30] and [31].

The second scheme, which is called the CSN scheme (Chuvakin-Smith-
Neerven) [32] utilizes massive coefficient functions to yield a better treatment
of the low Q? region. For higher Q? the m?/Q? terms introduced vanish as
()? — oo so we match the zero mass four flavor scheme. The iterative pro-
cedure to include massive coefficient functions was suggested in [33]. Further
details on the above schemes are presented in Chapters 4 and 5.

In Chapter 2 we present a new multifunctional evolution code that allows
fast and accurate evolution of all parton densities in leading order, next-to-
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leading order and next-to-next-to-leading order (LO, NLO and NNLO) in a;
using the direct z-space method of solving the spin-averaged evolution equa-
tions for parton densities. The important features of the code include the
analytic computation of the LO, NLO and NNLO weights, the NNLO heavy
flavor threshold matching conditions and NNLO evolution. This work is al-
ready available [34] and will be submitted for publication.

In Chapter 3 we apply the above mentioned code to create our own den-
sity set in NNLQO. The chapter deals with charm and bottom flavor matching
conditions for parton densities. Using a modified minimum renormalization
scheme (MS) based on dimensional regularization and starting from a three-
flavor density set, where the scale ¢ < m,., we use our two-loop matching
conditions and our evolution code described in Chapter 2 to generate a new
set of four-flavor parton densities where m. < p < m; and five-flavor densities
where p > my. We also study the effect of the NNLO matching conditions on
the evolution equations which is important for scales just above the transition
regions. This includes the small z and small Q% domain recently studied by
the H1 and ZEUS experiments at HERA. We found that at small x the effects
of the matching conditions never die away even for large p?. This work is
published in [35].

Chapter 4 deals with calculation of charm structure functions using the
BMSN and CSN variable flavor number schemes in deep inelastic electron-
proton scattering. In these schemes the coefficient functions are derived from
mass factorization of the heavy quark coefficient functions presented in a fixed
three flavor number scheme. Since the coefficient functions in the variable
flavor number schemes have to be finite in the limit m — 0 we have defined a
prescription for those processes where the virtual photon is attached to a light
quark. Furthermore one has to construct a parton density set with four active
flavors (u,d,s,c) out of a set which only contains three light flavors (u,d,s).
This is done using the code from Chapter 2. In order a? the two sets are
discontinuous at g = m, which follows from mass factorization of the heavy
quark coefficient functions. The charm component of the structure function
F, . 1s insensitive to the different variable flavor number schemes. In particular
the BMSN and CSN schemes both agree in the threshold region with a three
flavor scheme description in fixed order perturbation theory. However one
version does not lead to a correct description of the threshold behavior of the
longitudinal structure function £y, .. This happens when one requires a non-
vanishing zeroth order longitudinal coefficient function. This work is published
in [32].

Chapter 5 extends the treatment in Chapter 4 to the bottom structure
functions Fyp(z, Q* m.?) and Frp(z, Q* m.?). We again use the BMSN and
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CSN schemes to describe bottom quark production. For structure function
generation we use our new five flavor parton density set created by our evolu-
tion code. This set satisfies the requirements from Chapter 4. Both the BMSN
and CSN schemes give almost identical predictions for the bottom structure
functions. Also they both agree well with the corresponding results based on
NLO four-flavor perturbation theory over a wide range in x and Q?. This work
is published in [36].

The z and @? differential cross sections for charm particle production
are provided in Chapter 6. Data for D**(2010) meson electroproduction in
the range 10 < Q% < 1350 GeV? has recently been presented by the H1 and
ZEUS collaborations at HERA. We use these results together with previously
published data for Q? > 1 GeV? to test whether one can distinguish between
different theoretical schemes for charm quark electroproduction based on the
differential cross-sections measurements. We find that it is not possible at
present to make such a differentiation up to the largest measured Q?. Then
we point out the regions where differences between the various schemes arise.
Future experiments with higher luminosity should be able to make more precise
measurements. This work is published in [37].

We conclude by noting that VENS provide viable descriptions for deep
inelastic heavy quark production but more experimental data is needed to
make conclusions about the best scheme and the role of the NNLO corrections
in the predictions.

12



13

Bibliography

[1]

2]

[11]

[12]
[13]

M. Gell-Mann, Phys. Lett. 8 214 (1964); G. Zweig, preprint CERN Th
401, 412 (1964).

E.D. Bloom et al, Phys. Rev. Lett. 23, 930 (1969); M. Breidenbach et al,
Phys. Rev. Lett. 23, 935 (1969).

H. Fritzsch, M. Gell-Mann, and H. Leutwyler, Phys. Lett. B47, 365
(1973).

J.J. Aubert et al, Phys. Rev. Lett. 33, 1404 (1974); J.E. Augustin et al,
Phys. Rev. Lett. 33, 1406 (1974).

S. W. Herb et al, Phys. Rev. Lett. 39 252 (1977).

F. Abe et al. (CDF) Phys. Rev. D 50 2966 (1994); S. Abachi et al (DO0),
Phys. Rev. Lett. 74, 2632 (1995).

R. Feynman, Phys. Rev. Lett. 23 1415 (1969).

R.G. Roberts, in The Structure of the Proton, Cambridge University Press
(1993).

G. Sterman et al, Handbook of Perturbative QCD: Rev. Mod. Phys. Vol.
67 No.l January 1995.

J.C. Collins, D.E. Soper and G. Sterman, in Perturbative Quantum Chro-
modynamics, World Scientific, Singapore (1993).

R.K. Ellis, W.J. Stirling and B.R. Webber, in QCD and Collider Physics,
Cambridge University Press (1996), Chapter 4.3.

K.G. Wilson, Phys. Rev. 70 1343 (1973).

G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977); V.N. Gribov
and L.N.Lipatov, Sov. J. Nucl. Phys. 15 438, 675, (1972); Yu. Dokshitzer,
Sov. Phys. JETP 46, 641 (1977).



14

[14] E. Laenen, S. Riemersma, J. Smith and W.L. van Neerven, Nucl. Phys.
B392, 162 (1993); ibid. 229 (1993); S. Riemersma, J. Smith and W.L.
van Neerven, Phys. Lett. B347, 43 (1995).

[15] M. Glick, E. Reya and A. Vogt, Z. Phys. C67, 433 (1995).

[16] M. Glick, E. Reya and A. Vogt, Eur. Phys. J. C5, 461 (1998), [hep-
ph /9806404,

[17] B.W. Harris and J. Smith, Nucl. Phys. B452 109 (1995); Phys. Rev. D57
2806 (1998).

[18] J. Amundson, C. Schmidt, W.K. Tung, X. Wang, JHEP0010 031 (2000).
[19] H.L. Lai and W.K. Tung, Z. Phys. C74 463 (1997).

[20] M.A.G. Aivazis, J.C. Collins, F.I. Olness and W.-K. Tung, Phys. Rev.
D50, 3102 (1994); F. Olness and S. Riemersma, Phys. Rev. D51, 4746
(1995).

[21] S. Kretzer and 1. Schienbein, Phys.Rev. D58 094035 (1998).

[22] H.L. Lai, J. Huston, S. Kuhlmann, J. Morfin, F. Olness, J. Owens, J.
Pumplin, W.K. Tung, Eur.Phys.J. C12 375 (2000) [hep-ph/9903282].

[23] R. S. Thorne, R. G. Roberts, Phys.Lett. B421 303 (1998).

[24] A.D. Martin, R.G. Roberts, W.J. Stirling and R. Thorne, Eur. Phys. J.
C4, 463 (1998).

[25] S. Kretzer, Phys.Lett. B471 227 (1999).

[26] W.L. van Neerven and A. Vogt, Nucl. Phys. 568 263 (2000) [hep-
ph/9907472).

[27] W.L. van Neerven and A. Vogt, Phys. Lett. B490 111 (2000) [hep-
ph/0007362].

(28] A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur.Phys.J.C18
117 (2000).

[29] M. Buza, Y. Matiounine, J. Smith, W.L. van Neerven, Eur. Phys. J. C1,
301 (1998); Phys. Lett. B411 211 (1997).



[30] M. Buza, Y. Matiounine, J. Smith, R. Migneron and W.L. van Neerven,
Nucl. Phys. B472 611 (1996).

[31] J. Smith, in “New trends in HERA Physics”, Proceedings of the Ringberg
Workshop May 1997, World Scientific 1998, p.283, 1997.

[32] A. Chuvakin, J. Smith and W.L. van Neerven, Phys. Rev. D61 096004
(2000), [hep-ph/9910250].

[33] J.C. Collins, Phys. Rev. D58, 0940002 (1998).
[34] A. Chuvakin and J. Smith, [hep/ph-01031777].

[35] A. Chuvakin and J. Smith, Phys. Rev. D61 114018 (2000), [hep-
ph/9911504].

[36] A. Chuvakin, J. Smith and W.L. van Neerven, Phys. Rev. D62 036004
(2000), [hep-ph/0002011].

[37] A. Chuvakin, J. Smith and B. W. Harris, Eur. Phys. J. C18 547 (2001),
[hep-ph/0010350].

15



Chapter 2

Evolution program for parton densities with
perturbative heavy flavor boundary conditions
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2.1 Introduction

Deep-inelastic lepton-hadron scattering experiments probe the internal
structure of hadrons. The lepton-hadron inclusive cross sections may be writ-
ten in terms of structure functions, which depend on the virtuality of the probe
Q?%. Three structure functions Fy, F, and F}, are necessary to describe neu-
tral current (photon and Z-boson exchange) and charged current (W-boson
exchange) reactions. In perturbative quantum chromodynamics (pQCD) the
probe interacts with partonic constituents of the hadron. There are proba-
bility densities f(x,u?) to find partons carrying a fraction = (0 < = < 1)
of the longitudinal momentum of the hadron at a mass factorization scale p.
Therefore the F;, 1 = 1,2, L also depend on z and p.

The operator product expansion (OPE) allows the structure functions to
be written as convolutions of the parton (quark and gluon) probability densities
with partonic hard scattering cross sections (or coefficient functions). The lat-
ter can be calculated in pQCD. Even though the former cannot be calculated in
pQCD, their u dependence is determined by a set of integro-differential equa-
tions, the (Dokshitzer-Gribov-Lipatov)-Altarelli-Parisi evolution equations [1],
which follow from renormalization group analysis. Discussions of the pQCD
description of deep inelastic scattering reactions are available in [2] and [3].
The probability densities and splitting functions are defined in the modified-
minimal-subtraction (MS) scheme.

For simplicity we will call the above equations the evolution equations.
They describe processes where a massless parton (quark or gluon) carrying
a fraction of the longitudinal momentum of the incoming hadron radiates a
massless parton and becomes a (different) massless parton with a different mo-
mentum fraction. The probability for this process to happen is determined by
splitting functions which are computed order-by-order in pQCD. The leading-
order (LO) and next-to-leading order (NLO) splitting functions have been
known for some time [4], [5], [6], [7], [8], [9] and the results are summarized
in a convenient form in [3]. Recently some moments of the next-to-next-to-
leading order (NNLO) splitting functions have been calculated in [10], see also
[11] and [12] . If the z-dependence of the quark and gluon densities in a hadron
are parametrized at one value of p, (say at po,) then the solutions of the evo-
lution equations with the above LO, NLO or NNLO splitting functions yield
the = dependence of the massless parton densities at a different p. There is a
second scale in the pQCD theory, the renormalization scale, which appears in
argument of the the running coupling «;. It is usually set to be the same as
the mass factorization scale p so as; = a,(u?).

The flavor dependence of the quark and anti-quark densities is governed
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by the flavor group, which is SU(2) for the up and down quarks, SU(3) for
the up, down and strange quarks etc. Therefore is is convenient to form
flavor non-singlet and flavor (pure) singlet combinations of densities. The
former have their own evolution equations. The latter mix with the gluons and
the combined evolution is described by matrices which obey coupled integro-
differential equations.

A number of methods to solve the evolution equations for the parton
densities have been proposed, including direct z-space methods, [13], [14], [15],
[16], [17], [18], orthogonal polynomial methods [19], [20], and Mellin-transform
methods [21], [22]. A compilation of parton density sets is available in [23].

The best method, which should be both accurate and fast, depends on
region chosen in x and pu*. Currently the requirements are that the code be able
to evolve densities from a minimum p? near 0.26 GeV? up to a maximum
near 10° GeV? required for QCD studies for the future Large Hadron Collider
at CERN. The range in z is from a minimum value near 10~° up to a maximum
near unity. We use the direct z-space method, with the following additional
features.

One of our aims is a better treatment of parton density evolution for
"light” u, d and s quarks near the heavy flavor thresholds chosen to be at the
charm and the bottom quark masses (m. and my; respectively). The parton
density description must be modified to incorporate new ¢ and b "heavy” quark
densities as the evolution scale increases. The implementation of the NLO
and NNLO matching conditions across heavy flavor thresholds in the variable
flavor number schemes (VFNS) [24], [25], [26], [27] involve large cancellations
between various terms in the expressions for the structure functions. Poor
numerical accuracy in the solution for the evolution of the parton densities at
small scales would spoil these cancellations and ruin the VFNS predictions.
We achieve the required accuracy by avoiding one numerical integration in
our program so we analytically calculate the weights for the exact LO, the
exact NLO and the approximate NNLO splitting functions. The approximate
NNLO splitting functions are taken from [28],][29], while the relevant operator
matrix elements (OMEs), which provide the matching conditions on the parton
densities across heavy flavor thresholds, are taken from [30].

Since we start the scale evolution from a set of densities (input boundary
conditions) at a low scale g = g < m, the running coupling a;(p?) is large.
We therefore use the exact solution of the NLO equation for a; and match the
values on both sides of the heavy flavor thresholds to three decimal places. We
mention here that the NNLO matching conditions on «y across heavy flavor
thresholds are available in [31] and [32]. Our program evolves both light and
heavy parton densities in LO, NLO and NNLO from a minimum z equal to
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1077 to a maximum x equal to unity, a mimimum z* = 0.26 (GeV)? in LO and
p? = 0.40 (GeV)? in NLO and NNLO and and a maximum g? = 10° (GeV)2.
Results have been published in [25], [26], [27] and [33]. Here we give a detailed
write up of the program.
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2.2 The evolution equations

2.2.1 Definitions of densities

We evolve combinations of up (u), down (d), strange (s), charm (¢) and
bottom (b) quark densities which transform appropriately under the flavor
group. Hence we define flavor-non-singlet valence quark densities by

fk—l?:(nfrfuuz) = fk(nﬁwv:uz) - f];(nf7xvﬂz)7 k= uvd' (221)

The flavor-singlet quark densities
S 2 & 2
fq (nfvxvﬂ ):ka+l}(nf7x7ﬂ ) (2'2'2)
k=1

are defined in terms of the expression

Fer(ng @, p?) = fulng, , p1%) + frlng, o, p?), k=u,d,s,c,b, (2.2.3)

when ny = 5. Then the flavor-non-singlet sea quark densities are
1
RS ugse.) = Feralngansl) = o fnapt). (224)

These equations will be discussed further in the next section.

2.2.2 The evolution equations

A typical evolution equation is that for a flavor-non-singlet parton density
Y3z, pu?)

0
0ln p?

as(p?) [t de y o
Moy, p?) = / - PNS(;,/LZ) NS, ) (2.2.5)
Y J
where PN5(y/x, u?) is a non-singlet splitting function, and «,(u?) is the run-
ning coupling.

The splitting functions in the evolution equations can be expanded in a
perturbation series in a; into LO, NLO and NNLO terms as follows

Ple.pt) = POz ) + (S0 POty 4 (B pnge ) (2.06)

The non-singlet combinations of the ¢,(¢.) to ¢s(¢s) splitting functions, where
the subscripts r, s denote the flavors of the (anti)quarks ¢ and ¢ respectively
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and satisfy r,s = 1,---,ny, can be further decomposed into flavor diagonal
parts proportional to 6,; and flavor independent parts. In LO there is only
one non-singlet splitting function P, but in NLO it is convenient to form two
combinations from F,, and F,; as follows

P+ = qu ‘|‘qu,
P = qu — qu. (2.2.7)

These splitting functions are used to evolve two independent types of non-
singlet densities, which will be called plus and minus respectively. They are
given by

fi+ = f?s(nfvxvﬂz)v
£ = foilnp o). (2.25)

Since the general formulae in Eqgs. (3.1)-(3.4) are rather involved the easiest
way to explain the indices is by explicitly giving the combinations we use. For
7 = 1,2 we have

fi=u—u,f; =d—d, (2.2.9)
which are used for all flavor density sets. Then for three-flavor densities 1 =
1,2,3 and we define

fif=u+u—3(3)/3, ff=d+d—-%(3)/3,
fF=s+35-%(3)/3, (2.2.10)

where ¥(3) = qu(3) =u+u+d+d+ s+ 35 These densities should be used

for scales p < m.. For four-flavor densities ¢ = 1,2,3,4 and we define
fl :Iu+'ﬁ_2(4)/47 f2 :d+g_2(4)/47
fF=s5+5-%(4)/4, ff=cte-—X4)/4, (2.2.11)
where ¥(4) = ff(él) = ¢+ ¢ + 3(3). These should be used for scales in the
region m. < pu < my. For five-flavor densites ¢ = 1,2,3,4,5 and we define
fr=uta-SE)5,  ff=dtdoS()5,

f§=5+5-305)/5, fi=ctc-X(5)/5,

%(5)
fF=b+06—-3%(5/5, (2.2.12)

where ¥(5) = ff(f)) =b+b+ %(4). These should be used for scales p > m.
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If we define ¢ = In(p?/(1 GeV?*) then we need to solve the four evolution
equations

afi+(y7t) _ O‘.S_()/ld_x]ﬂ(‘ )f;r(x,t)7 (2.2.13)

af].—a(j,,t) _ QSE:) /yl %p_(%,t)fj_(%t)a (2.2.14)
8fgé?,t) _ a;Ert) /yl dx_r [P ( )fs(x t)-l-ng( )fS(r t)](2.2.15)
el ) [0 o gt + B L 0]2.216)

where for g < m. we set 1 = 1,2,3, j = 1,2, qu = X(3) and the gluon is
a three-flavor gluon. When m, < pu < my, we use ¢ = 1,2,3,4, 5 = 1,2,
f(f = ¥(4) and the gluon is a four-flavor gluon. Finally when p > my, we set
1 =1,2,3,4,5, 5 = 1,2, ff = Y(5) and the gluon is a five-flavor gluon. Note
that since NNLO splitting functions are approximate we provide the high and
low estimate for each splitting functions labeled A and B. For all calculations
we use their average so that the error is minimized.

The densities satisfy the momentum conservation sum rule which we write
in terms of the u,d,..b (anti)-quark and gluon densities as

1 _
| dew ule, i) + (e w®) + da, i) + d(z, i)
+s(z, 1) + 8z, 1?) + ez, u?) + e(x, 1?)]0(p* — m?)
b, 1) + b, g0 — mi) + gz, p?)] =1.
(2.2.17)
Also the quark constituents carry all the charge, isospin, strangeness, charm

and bottom quantum numbers of the nucleon so they also satisfy the other
standard sum rules for the conservation of these quantities, see [2], [3].
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2.3 Direct z-space method of solution and ini-
tial conditions

2.3.1 The method

Our choice of the direct z-space method is motivated by the necessity
to step densities across heavy flavor thresholds using LO, NLO and NNLO
boundary conditions. The procedure of doing this with Mellin moments would
involve taking moments of the densities and then inverting moments several
times. The direct z-space method is much more intuitive and straightforward.
The main features of this method are linear interpolation over a grid in z and
second-order interpolation over a grid in ¢t. Let us describe it in more detail
to point out where we differ from the method in [14].

First we consider the z-variable in the evolution and write the right-hand-
side of the evolution equation Eq.(4.3.5) for the non-singlet density as

I(x) = /d—“—op (2) g(z) (2.3.1)

where xg < 2 <1,
o(e) = 2f(), (232
and
To <y < oo < Ty < Ty = 1, (2.3.3)

with g(x,4+1) = ¢(1) = 0. Between grid points #; and x4,  is chosen so that

q(x) = (1 = 2)q(x:) + 2q(xis1) , (2.3.4)

with # = (@ — @;) /(2,41 — ;). Using this relation we convert the integral into

a sum
n+1

I(z0) = Z w(x;, x0)q(x;), (2.3.5)

1=0

where the weights are (in all orders LO, NLO and NNLO)

w(xo, x0) = S1(s1,50)
w(xg,x0) = S1(Sit1,8i) — S2(8:,8i-1) , (2.3.6)
where s; = zo/z; and
v v dz
Silw) = —— [z wP)T,
u v dz o
Sy(u,v) = v_u/u(z—v)P(z)7 (2.3.7)
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In the above formula P(z) denotes the splitting function of the corre-
sponding order in a; and type (non-singlet, singlet, etc.) We use the LO and
NLO splitting functions in [19] and the approximations to the NNLO splitting
functions from [28] and [29]. For completeness the latter are given in Appendix
A. We have calculated the integrals in Eq.(2.3.7) analytically and the results
are in the computer program. This yields the formula in Eq.(2.3.5) describ-
ing the grid for the z variable. Note that the weights w(®), w®) and w® are
those for the exact LO, the exact NLO and the approximate NNLO splitting
functions respectively. Thus, for the singlet case, we have

d(zoX(x0)) @ T o el Ds vz (2
TR = G 2 [l e w) + 5 el w0 + (2Pl o)

o
2 ) ws, 0)]

x wig(:)] (2.3.8)

where ¥ is either £(3), ¥(4) or ¥(5) depending on the scale.

Now consider the variation in the variable ¢t. For each z; we pick a grid

as
+[’w§2)(l’u$0) + %’wéé)(% o) + (

in ¢ labelled by distinct points ¢;. Then, for example, the non-singlet equation
becomes

n

! s t s t
i (rots) = 525 o) + 5l 2
as(1;)
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+ ( V) (@, wi)la(zn,t;) (2.3.9)

where q‘(:cz-, t;) denotes the derivative with respect to ¢ evaluated at ¢t = ¢;. In
compact notation this equation can be rewritten as

!

q; =wgq; + 5, (2.3.10)

with S being the sum of the terms on the right hand side of Eq.(2.3.9) excluding
the j-th term.

For ¢ between the grid points ¢;_; and ¢; we interpolate the parton density
using quadratic interpolation as follows:

q(zi,t) = at® + bt + c. (2.3.11)

Thus we relate the value of ¢ at the point ¢; to that of ¢ at the point ¢;_; by

1 7 7
q(xi,t;) = q(zi, tjim1) + §[q (w4,t5) + q (i, tj-1)] ALy, (2.3.12)
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where At; =1; —t;_4. This equation can also be written more compactly as

1 ! !
¢ = g1+ 5(¢1 + ¢;)At; (2.3.13)
The resulting system of two linear equations in Eq.(2.3.10) and Eq. (2.3.13)

for ¢; and q;- has the solution

2qi-1 + (¢, + S)At;
g = (o1 & 5)At5 (2.3.14)
2 — wAt]-
Then we find q;- from Eq.(2.3.10). Applying the same procedure to the gluon
and singlet combinations involves four equations because we have to compute
both the densities and their derivatives.

The evolution proceeds from the initial u3 = pio (or pa = pio) to the

2
ot

first heavy flavor threshold at the scale u? = m?. Next the charm density
is introduced in NNLO (a?-order terms) and all the four-flavor densities are
evolved from the new boundary conditions in Section 4.2. This evolution
continues up to the transition point y? = m}, where the same procedure is
applied to generate the bottom quark density. From that matching point all
five-flavor densities are evolved up to all higher u? scales starting from the
boundary conditions in Appendix B.

Since the weights for the calculation are computed analytically from the
LO, NLO [19] and NNLO ([28],]29]) MS splitting functions we remove possible
instabilities in the numerical integrations. Hence the program is very efficient
and fast. The results from the evolution code have been thoroughly checked
against the tables in the HERA report [16] and they agree to all five decimal

places.

2.3.2 The initial conditions
The GRV98 [22] three-flavor LO and NLO parton density sets contain

input formulae at low scales < m. which are ideal as initial values for our
parametrizations. Therefore we start our LO evolution using the following
input at p2 = p, = 0.26 GeV?

xfu—ﬂ(gul%ﬂ(?)) = $‘UU($7ﬂiO)

= 1.239 22 (1 — 2)>™ (1 — 1.8y/z + 9.52)
Ifd—c?(37xvﬂg) = l’dv(.fl?,ﬂio)

= 0.614 (1 —2)° zu,(z, pi o)
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e(fa(3, 2, 1) = fa(3, 2, 10)) = 2A(z, pio)

= 0.23 2% (1 —2)"* (1 - 12.0y/z + 50.9z)
e(fa(B, 2, pm5) + fu(B, 2, 15)) = w(u+d)(w, pio)

= 1.52 2% (1 - 2)*" (1 — 3.6/ + 7.82)

efy(3,2,m0) = wg(z, uio)

= 1747 2" (1 — 2)?®
$f8(37 Z, /’L?J) = $f§(37 Z, ﬂ?)) = $5($7 :U‘io)

= as(z,uio) =0. (2.3.15)

Here A = d — @ is used to construct the non-singlet combination.
We start the corresponding NLO evolution using the following GRV98
input at p2 = pé1o = 0.40 GeV?

-rfu—ﬂ(ga Zz, M(QJ) = xuv(x, /LIQ\ILO)
= 0.632 2% (1 — 2)>%7 (1 + 18.22)
ffd—ci(gafﬁ;#g) = $dv($aﬂ12\mo)
= 0.624 (1 —2)"° zu,(z, piro)
”L’(faj(.}’ Zz, /L?J) - fﬂ(37 Zz, /L(ZJ)) = $A($7 /LIQ\ILO)
= 0.20 2°* (1 — 2)"** (1 — 13.3y/z + 60.0z)
o(fa(3, 2, 10) + fa(3, 2, 10)) = w(u+d)(x, pxro)
= 1.24 2°%(1 — 2)®° (1 — 2.3/ + 5.7x)
efy(3,2,m5) = wg(z, piLo)
= 20.80 z'°(1 — 2)*!
xfs(3, @, M?J) = af5(3, , :u?)) = as(x, /LIZ\ILO)
= as(x, pfpo) = 0. (2.3.16)

We start the corresponding NNLO evolution using the same NLO input
and starting scale as above.

2.3.3 The calculation of the running coupling

The heavy quark masses m. = 1.4 GeV?, my = 4.5 GeV? are used through-
out the calculation. We also use the exact solution (as opposed to a perturba-
tive solution in inverse powers of In(u?/A?)) of the differential equation

das(p?) _ Bo o9, o b 5
dln(/ﬂ) - _EQS(M ) - 1672 as(/’é )7

(2.3.17)
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for the running coupling a,(u?). Here By = 11 —2n;/3 and 3; = 102 —38n;/3.
Another way of writing this equation is
@ A7 ﬁl 4r B
00 2 I t 5
(AfAor)?  Pocs(u ) 5%

In

Boas(p?) B3 (23.18)

The values for ZNL(EHXJ)XCT are carefully chosen to obtain accurate matching of o
at the scales m? and m7. We used the values LKSEXa%? = 299.4, 246, 167.7, 67.8
MeV/c? respectlvely in the exact formula (which yields aEXACT( 2) =0.114,
aBXACT (12) = 0.205, oBXACT(m2) = 0.319, oPXACT(42, 1) = 0.578 ) and
A(3456) = 204, 175, 132,66.5 MeV/c? respectively (which yields al©(m%)
= 0.125, aLO(mb) = 0.232, at9(m?) = 0.362, ot©(uiy) = 0.763 ) for the
LO formula (where 5 = 0). There is a NNLO discontinuity of aproximately
two parts in one thousand in the running coupling across heavy flavor thresh-
olds [31], [32]. We have ignored this effect to focus on the numerically more
significant matching of the flavor densities.

2.3.4 The evolution process

Three flavor evolution proceeds from the initial y? to the scale p* = m? =
1.96 (GeV?)2. At this point the charm density is then defined by

Forslng +1,m?) = aX(ng,m?)[ALI(1) @ f5(ns,m?)
+A5,(1) @ f5(ng,mY)] (2.3.19)

with ny = 3 and a; = a,/47. We have suppressed the = dependence to make
the notation more compact. The @ symbol denotes the convolution integral
f@g = [f(a/y)gly)dy/y, where © < y < 1. The OME’s AG3(s*/m7),
A (p?/m?) are given in [30] and are also listed in Appendix B. The reason
for choosing the matching scale p at the mass of the charm quark m, is that
all the In(u?/m?) terms in the OME’s vanish at this point leaving only the
nonlogarithmic pieces in the order o> OME’s to contribute to the right-hand-
side of Eq.(4.19). Hence the LO and NLO charm densities vanish at the scale
= me. The NNLO charm density starts off with a finite z-dependent shape
in order a?. Note that we then order the terms on the right-hand-side of Eq.
(2.3.19) so that it contains a product of NLO OME’s and LLO parton densities.
The result is then of order a? and should be multiplied by order a? coefficient
functions when forming the deep inelastic structure functions.
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The four-flavor gluon density is also generated at the matching point in
the same way. At p = m, we define

fgs(nf +1,m?) = fgs(nf77TLZ)
+a§(nf7 7713) [AS(LQ(l) ® qu(nf, mg) s
+45,0(1) @ 5 (ng,md)] (2.3.20)

The OME’s A5 ,(p?/m?), A5, o(p?/m?) are given in [30] and are also listed
in the Appendix B. The four-flavor light quark (u,d,s) densities are generated
using

fk+%(nf+1am3) = fk+l§(nf7m3)
+ai(ng,m2)Ayo(1) @ frr(ng,m?). (2.3.21)

The OME A, (p*/m?) is given in [30] (as well as in Appendix B) and the
total four-flavor singlet quark density folows from the sum of Eqs. (2.3.19) and
(2.3.21). In Egs. (2.3.20) and (2.3.21) we set ny = 3. The remarks after Eq.
(2.3.19) are relevant here too.

Next the resulting four-flavor densities are evolved using the four-flavor
weights in either LO, NLO and NNLO up to the scale y? = m} = 20.25
(GeV?)2. The bottom quark density is then generated at this point using

Fopslng +1,m}) = aX(ng,m)[ALI(1) @ f5(ns,m})
+A5)(1) ® f5(ng,m})] (2.3.22)

and the gluon and light quark densities (which now include charm) are gener-
ated using Eqgs.(2.3.19)-(2.3.21) with n; = 4 and replacing m? by m. There-
fore only the nonlogarithmic terms in the order > OME’s contribute to the
matching conditions on the bottom quark density. Then all the densities are
evolved up to higher p? as a five-flavor set with either LO, NLO and NNLO
splitting functions. This is valid until ¢ = m; ~ 175 GeV? above which one
should switch to a six-flavor set. We do not implement this step because the
top quark density would be extremely small.

The procedure outlined above generates a full set of parton densities
(gluon, singlet, non-singlet light and heavy quark densities,) for any = and p?
from the three-flavor LO, NLO and NNLO inputs in Eqs.(2.3.15) and (2.3.16).
Note that we have used p? for the factorization and renormalization scales in
the above discussion. In the computer program we use the notation that ()?
denotes these scales, since this is done in all the previous computer codes for
the parton densities.
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2.4 Input parameter description and usage

To prepare the program for use unpack the distribution package adens-
24.tar.gz by typing tar -xzf adens-24.tar.gz. The resulting directory will
contain the following files

head.h
main.h
main.c
l-a-w.c
nl-a-w.c
alpha.c
init.c
polylo.c
intpol.c
evolver.c
thresh.c
a-coefs.c
loader.c
quadrat.c
daind.c
integrands.c
grids.c
weights.c
nnl-a-w.c
wgplg.c
evolution_parameters.input
makefile
my_howto.tex
sample.out

To build the executable on a machine with a gcc compiler type make .
The executable named adens.x will be produced. To run the code just run
the file adens.x. Some debugging information may appear on the standard
output.

Here is the parameter file (evolution_parameters.input) explanation
with default values shown:
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0.204e0 | Lambdal.O-3 LO A for Ny =3
0.175e0 | Lambdal.O-4 LO A for Ny =4
0.132e0 | Lambdal.O-5 LO A for Ny =5
0.306e0 | LambdaNLO3 NLO A for Ny =3
0.257e0 | LambdaNLO4 NLO A for Ny =4
0.1734e0 | LambdaNLO5 NLO A for Ny =5
0.2994e0 | LambdaENLO3 Exact A for Ny =3
0.246e0 | LambdaENTL.O4 Exact A for Ny =3
0.1677e0 | LambdaENLO5 Exact A for Ny =3
0.40e0 | Qinitial2 Initial ()? to start evolution
1.96e0 | QcharmMass Mass of first heavy quark c
20.25e0 | QbottomMass Mass of second heavy quark b
1.96e0 | QcharmThreshold Charm threshold
1.96e0 | AlphaCharmThreshold C threshold used for
20.25e0 | QbottomThreshold Bottom threshold
20.25e0 | AlphaQbottomThreshold B threshold used for o
1000.0e0 | Qfinal2 Final ()?
130 | tGridSize Q? grid size
200 | xGridSize x grid size
130 | xGridSplit x split between log and linear
1.0e-5 | xInitial x initial
0.2e0 | xSplit x at the split btw log and linear
1.00e0 | xFinal z final (always 1)
0 | DebugLevel Error message detail (0-5)
1 | GraphVsX Plotting data files are versus x (1)
or Q* (0)
1 | Order LO/NLO/NNLO for 0,1,2
0 | DoFortran Produce (1) or no (0) data files for
CSN/BMSN  Fortran programs
(1-yes, 0-no)
1 | AlphaDoSeparateThreshold | Use separate thresholds for o (1-

yes, 0-n0)
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1 | AlphaUseExact Use exact GRV98-style a; (1-yes,
0-no)

0 | ThreeFlavorMode Calculate GRV98-style densities
with no heavy flavors (1-yes, 0-
no)

0 | GraphAll Plot all data points (1-yes, 0-no)

0 | NNLOmultiOrderCHARM | Use our proper order NNLO
heavy flavors (1-yes, 0-no)

1 | DoBottomThreshold Generate bottom (1-yes, 0-no)
LoadWeightsMadeBefore | Use ready weights if available (1-
yes, 0-n0)
1 | DoNotDumpWeights Dump weight for future use as the
option above (1-yes, 0-no)
0 | NLOANNLO Use NLO weights for NNLO cal-

culation (1-yes, 0-no)

The first set of Lambdas are used for LO calculations. The second set
are used for NLO and NNLO calculations if the exact «a; is not requested
(AlphaUseExact=0). The next set (LambdaENLO3, LambdaENLO4, Lamb-
daENLOb5 ) are used for the exact solution of the differential equation for a;
as proposed in the GRV98 paper [22]. The code that calculates the exact aj
might use its own set of flavor thresholds (which means that the number of
flavors used for a; can be reset independently from the regular heavy flavor

threshold as done in [22]).

Next we give the Q? limits and the heavy masses: the initial and final
(*, the charm and bottom masses (used in threshold calculations), the heavy
flavor thresholds and the separate ay thresholds. Next follow the grid sizes
in z and Q? together with z initial and final (always 1) and the switch point
between logarithmic and linear grids in the z dimension. The z grid always
starts as logarithmic and then becomes linear at higher x, usually at a value
of the order of 0.1 (xGridSplit parameter).

The last group of parameters contains various control values that set the
modes of the computation:
DebugLevel , controls the amount of generated error, warning and information
messages,
GraphVsX | controls the printing of the output data for plotting (first column
is either z or Q?, then subsequent columns will contain density values for
various @* or ),
Order, sets calculation order (use 0,1,2 for LO,NLO,NNLO),

DoFortran, sets whether to dump interpolated densities on a special grid for
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future use in Fortran code for the calculation of structure functions ; CSN and
BMSN refer to VENS schemes which are explained in [25],
AlphaDoSeparate Threshold, sets whether we use a separate threshold for a;
(used, for instance for GRV98 set where ny for densities is always 3 and n for
o goes from 3 to 5,
AlphaUseFEzact, sets whether to use exact (differential equation solution) aj
for NLO and NNLO calculation,
ThreeFlavorMode, sets whether to run GRV98 mode (no heavy flavors, ny = 3
for all Q?),
GraphAll, controls the amount of graphing and printing output (either all
data points or the special grid defined in the file main.h, that contains some
favorite values (for more see Section 7)),
NNLOmultiOrderCHARM, activates NNLO threshold calculation using proper
order combinations (this mode requires one to first run the LO and NLO
calculations),
DoBottomThreshold, enables the bottom density,
LoadWeightsMadeBefore, turns on and off the loading of weights computed in
the prior runs,
DoNotDump Weights, sets whether to save computed weights to disk for future
use,
NLO4JNNLO, sets whether NLO weights are used for the NNLO calculation
(thus having only the boundary condition in NNLO).

Some common parameter settings and typical grid sizes for popular evo-
lutions are shown in Section 7.
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2.5 Description of the program

2.5.1 Program module summary

main.c
l-a-w.c
nl-a-w.c
alpha.c
init.c
polylo.c
intpol.c
evolver.c
thresh.c
a-coefs.c
loader.c
quadrat.c
daind.c
integrands.c
grids.c

weights.c
nnl-a-w.c

weplg.c

The main program, input and output
Calculation of LO weights

Calculation of NLO weights

Calculation of oy

Definition of initial functions
Calculation of polylogarithms
Interpolation routine

Evolution process subroutine

Threshold handling subroutine

OME:s for thresholds

Datafile reading subroutine

Gaussian integration subroutine
Another integration subroutine

Heavy flavor integrand calculation routine
Grid generation routine and

memory management routines

Weight table handling routine
Calculation of NNLO weights
Calculation of high order polylogarithms

2.5.2 main.c

subroutines:
none.

The main program module contains input handling from the parameter
file, parameter verification, calls to grid generating routines (MakeXGrid,
MakeTGrid), resets for all density arrays (array q) and their derivatives (ar-
ray qp). It also includes calls to the generation of weights (analowgts, anan-
lowgts ), the calls to evolution and threshold routines (evolver, threshold)
that do the actual work. Also it contains some pre-output density processing
and the results provided in various formats for both viewing and plotting.

2.5.3 l-a-w.c

subroutines:
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int analowgts(int nf,int loadWgts),
int computeLOwgts(int nf),
double sqq(double x,double y),
double sgg(double x,double y).

Analytically computes or reads from the file the LO weights for the evo-
lution equations.

2.5.4 nl-a-w.c

subroutines:
int ananlowgts(int nf,int loadWgts),
int computeNLOwgts(int nf),
double slff(double x,double y, int nf),
double s2ff(double x,double y, int nf),
double slfg(double x,double y, int nf),
double s2fg(double x,double y, int nf),
double slgf(double x,double y, int nf),
double s2gf(double x,double y, int nf),
double slgg(double x,double y, int nf),
double s2gg(double x,double y, int nf),
double slff_plus(double x, int nf),
double slgg_plus(double x, int nf),
double slp(double x,double y, int nf),
double s2p(double x,double y, int nf),
double slm(double x,double y, int nf),
double s2m(double x,double y, int nf),
double slp_plus(double x, int nf),
double slm_plus(double x, int nf),
double slgf lim(double sp,double nf),
double slfg_lim(double sp,double nf),
double s2ff_lim(double sp,double nf),
double s2fg_lim(double sp,double nf),
double s2gf_lim(double sp,double nf),
double s2gg_lim(double sp,double nf),
double s2p_lim(double sp,double nf),
double s2m_lim(double sp,double nf).

Analytically computes or reads from the file the NLO weights for the
evolution equation. These routines are grouped into 3 kinds: the sl,2xx



routines calculate the regular weights, the sl,2xx_lim routines calculate the
regular weights called at 1 and sl,2xx_plus do the weights that contain the
plus-distributions.

2.5.5 alpha.c

subroutines:
double alpha(double tt, int nf), double alphae (double tt,int nf).

Calculates LO, NLO and exact running coupling «; using corresponding
parameters from the input file.

2.5.6 1nit.c

subroutines:
double initq_uv(double xx),
double initq_dv(double xx),
double init_gl(double xx),
double initq_ss(double xx),
double initq_del(double xx),
double initq_udbar(double xx).

Sets initial values for all parton densities using the GRV98 input for LO
and NLO densities from [22].

2.5.7 polylo.c

subroutines:
double Li2(double x),
double Li3(double x),
double S12(double x).

Calculates these three polylogarithms using a fast routine with Bernouilli
numbers. .
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2.5.8 intpol.c

subroutines:
double int_q(int j,double xx,int it),
double interpolate(double xx,double *xt, double *yt,int points).

Interpolation routines used to calculate densities between grid points and
for integration at the threshold.

2.5.9 evolver.c

subroutines:
evolver(int it1,int it2,int ic,int ib).

The main routine that performs the evolution between thresholds for all
densities. It updates the main density array q and the density derivatives

array qp.

2.5.10 thresh.c

subroutines:
int threshold(int what,int itt),
int fdens4(double xx,int ittc,double *u,double *d,double *s),
double light_charm(double xx,int ittc),
double fcharm(double xx,int ittc),
double fhottom(double xx,int ittc),
double fsigma(double xx,int ittc),
double fgluon(double xx,int ittc),
double fcharm(double xx,int ittc),
double fhottom(double xx,int ittc).

Threshold handling routines to implement LO, NLO and NNLO matching
conditions for light and heavy densities at the charm and bottom thresholds.
The density routines are calls to convolution integrals that generate new den-
sities for ny + 1 flavors.

2.5.11 a-coefs.c

subroutines:

double alqg(double z,double fs2,double hm?2),
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double a2qq(double z,double fs2,double hm?2),
double a2qg(double z,double fs2,double hm?2),
double a2qqns(double z,double fs2,double hm2),
double softq(double z,double fs2,double hm2),
double corq(double z,double fs2,double hm2),
double a2gg(double z,double fs2,double hm2),
double softg(double z,double fs2,double hm2),
double corgl(double fs2,double hm?2),

double corg2(double z,double fs2,double hm?2),
double a2gq(double z,double fs2,double hm?2).

The OME routines used for NNLO threshold matching. These contain
the formulae in Appendix B.

2.5.12 loader.c

subroutines:
int loadOrd(int what).

Functions to handle threshold datafile loading, saving and verification.
This file allows one the ability to use previously computed density values at
the threshold in a new computation.

2.5.13 quadrat.c

subroutines:
double qadrat(double *x, double a, double b, double (*fx)(double), double €[]),
double lint(double *x, double (*fx)(double), double €[], double x0, double xn,
double {0, double {2, double {3, double {5, double {6, double {7, double {9,
double {14, double hmin, double hmax, double re, double ae).

Backup integration routine used as a check for the actual one used in the
threshold integration.

2.5.14 daind.c

subroutines:

double daind(double *x,double a,double b, double (*fun)(double),double eps,int
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key,int max).

Main Gaussian integration routine, see [34].

2.5.15 integrands.c

subroutines:
inline double fcharm_integrand(double x1),
inline double fgluon_integrand(double x1),
inline double fsigma_integrand(double x1),
inline double us_integrand(double x1),
inline double ds_integrand(double x1),
inline double ss_integrand(double x1),
inline double fhottom_integrand(double x1),
inline double light_charm_integrand(double x1).

Functions containing integrands for the threshold integration. They use
the density values and the coefficient functions from a-coefs.c to produce the
integrands that are then fed into the Gaussian integration program.

2.5.16 grids.c

subroutines:
int MakeXGrid(void),
int MakeTGrid(void),
int merge(double *a,double *b,int na, int nb,char w),
int check_grid(double *a,int n,char w),
int MakeFortranGrid(int test_mode),
double **allocate_real_matrix(int ur, int uc),
void free real_matrix(double **m,int ur).

Subroutines for making (and also merging and verifying) the initial grids
in z and Q? and the final grids for Fortran-code compatible output. The grid
merging is used to combine the evenly spaced grid generated automatically
from the initial and final values with the premade grid containing several x
and Q? values for plotting and outputting the data. Two routines are added
for deallocating memory.
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2.5.17 weights.c

subroutines:
int readWeights(int nf,int order),
int dumpWeights(int nf,int order).

Routines dealing with loading and saving computed NLO and NNLO
weight tables to do a fast calculation on the same grids. LO weights are not
saved as it is very fast to compute them every time.

2.5.18 nnl-a-w.c

subroutines:
int anannlowgts(int nf,int loadWgts),
int computeNNLOwgts(int nf),
double nn_s1ff(double x,double y, int nf),
double nn_s2ff(double x,double y, int nf),
double nn_slfg(double x,double y, int nf),
double nn_s2fg(double x,double y, int nf),
double nn_slgf(double x,double y, int nf),
double nn_s2gf(double x,double y, int nf),
double nn_slgg(double x,double y, int nf),
double nn_s2gg(double x,double y, int nf),
double nn_slff_plus(double x, int nf),
double nn_slgg_plus(double x, int nf),
double nn_slp(double x,double y, int nf),
double nn_s2p(double x,double y, int nf),
double nn_slm(double x,double y, int nf),
double nn_s2m(double x,double y, int nf),
double nn_slp_plus(double x, int nf),
double nn_slm_plus(double x, int nf),
double nn_slgf lim(double sp,double nf),
double nn_slfg_lim(double sp,double nf),
double nn_s2ff_lim(double sp,double nf),
double nn_s2fg_lim(double sp,double nf),
double nn_s2gf lim(double sp,double nf),
double nn_s2gg_lim(double sp,double nf),
double nn_s2p_lim(double sp,double nf),
double nn_s2m_lim(double sp,double nf).



Analytically computes or reads from files the approximate NNLO weights
for the evolution equations. Here the routines are grouped into three kinds:
the nn_s1,2xx routines calculate the regular weights, the nn_s1,2xx_lim routines
calculate the regular weights called at 1 and nn_s1,2xx_plus do the weights that
contain the plus-distributions.

2.5.19 wgplg.c

subroutines:
double wgplg(int n,int p,double x).

The routines which calculate polylogarithms using the method from CERN-
LIB [35]. They are only used for the higher order polylogarithms because the
routines for Li2, Li3 and S12 in polylo.c are faster.
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2.6 Results

The code can be used in several modes of operation.

For all of them there is some optimum grid size in # and Q2. Internally,
the grid with the sizes entered in the parameter file is merged with another
grid (that is used for plotting the output data at the end), thus increasing
the resulting grid size. This internal grid size contains all “popular” values,
like z = 0.1, 0.01, 0.001 etc., and is 38 in Q? and 64 in x. The corresponding
values are located in file main.h (arrays xpr[] and g2pr[]). This grid is then
merged with the automatically generated equidistant grid and the equal values
are weeded out. Shown in the table are the resulting grid sizes as shown in
the output file. The table uses the calculation for all flavors as opposed to the
GRV98-like (only three-flavor) densities. In general, the evolution time grows
quadratically in n, and linearly in ng2. The numbers we give below are for
an alpha PC with a 21164 processor unit running at 500 MHz, 1 Gbyte of
memory and rated at an Specfp = 20.4.

‘ order ‘ Ny ‘ ng2 ‘ accuracy,digits ‘ time,sec

LO | 162 |96 |5 15
NLO | 162 | 96 |3 113
NNLO | 162 | 96 |3 385
LO | 262 | 136 | 6 31
NLO | 262 | 136 | 5 275
NNLO | 262 | 136 | 5 1021
LO | 362 | 136 | 6 44
NLO | 362 | 136 | 6 529
NNLO | 362 | 136 | 5 1537

1. Set parameters to the following values to produce LO and NLO GRV98-
style fixed three-flavor densities for the whole range of Q? (only parameters
essential for this calculation are provided, the rest can be set to whatever one
wishes since they control the form of the output and similar features, not the
physically meaningful ones):
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LO
0.26 | Qinitial2

0 | Order
1 | ThreeFlavorMode
NLO
0.40 | Qinitial2
1 | Order

1 | AlphaUseExact
1 | ThreeFlavorMode

2. To generate regular VENS densities with all heavy flavors (both charm
and bottom) one sets:

LO
0.26 | Qinitial2
0 | Order
0 | ThreeFlavorMode
1 | AlphaDoSeparateThreshold
0 | NNLOmultiOrderCHARM
1 | DoBottomThreshold
NLO
0.40 | Qinitial2
1 | Order
0 | ThreeFlavorMode
1 | AlphaDoSeparateThreshold
1 | AlphaUseExact
0 | NNLOmultiOrderCHARM
1 | DoBottomThreshold

3. To generate VFNS densities involving proper order mixing at heavy
thresholds with all heavy flavors (both charm and bottom) but without using
NNLO weights (as done in our previous papers [25], [26], [27], [33]) one sets:



LO
0.26 | Qinitial2
0 | Order

0 | ThreeFlavorMode
1 | AlphaDoSeparateThreshold
1 | DoBottomThreshold

0.40 | Qinitial2

1 | Order

0 | ThreeFlavorMode
1

1

AlphaDoSeparateThreshold
AlphaUseExact
1 | DoBottomThreshold

NNLO
0.40 | Qinitial2

Order

ThreeFlavorMode

AlphaDoSeparateThreshold

AlphaUseExact

NNLOmultiOrderCHARM

DoBottomThreshold

NLO4NNLO

— = === O] N

In this mode it is necessary to generate LO and NLO sets by running
the program before running the NNLO set on the same grid! Those will be
dumped in special data files
(agrv99lo.BO.threshold, agrv99lo.CH.threshold,
agrv99nlo.BO.threshold, and agrv99nlo.CH.threshold)
that will later be read for the NNLO calculation whenever
NNLOmultiOrderCHARM=1.

4. To generate VFNS densities involving proper order mixing at heavy
thresholds with all heavy flavors (both charm and bottom) and using LO, NLO
and NNLO (approximate) weights one sets:
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LO
0.26 | Qinitial2
0 | Order

0 | ThreeFlavorMode
1 | AlphaDoSeparateThreshold
1 | DoBottomThreshold

0.40 | Qinitial2

1 | Order

0 | ThreeFlavorMode
1

1

AlphaDoSeparateThreshold
AlphaUseExact
1 | DoBottomThreshold

NNLO
0.40 | Qinitial2

Order

ThreeFlavorMode

AlphaDoSeparateThreshold

AlphaUseExact

NNLOmultiOrderCHARM

DoBottomThreshold

NLO4NNLO

Ol ===~ ol

In this mode it is also necessary to generate LO and NLO sets by running
the program before running the NNLO set on the same grid! Those will be
dumped in special data files
(agrv99lo.BO.threshold, agrv99lo.CH.threshold,
agrv99nlo.BO.threshold, and agrv99nlo.CH.threshold)
that will later be read for NNLO calculation whenever
NNLOmultiOrderCHARM=1.

Program output is arranged in several forms. First, the default output in
normal readable form goes into resLLO.dat, resNLO.dat or resNNLO.dat
or for GRV98-mode into resLO3.dat, resNLO3.dat or resNNLO3.dat
depending upon the set calculation order. This file contains the input param-
eters, calculation time and the columns of data versus % and z for all densities
(uv,dv,us,ds,ss,ch and bt, described in previous chapters). Here is the sample:
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Alpha(Q2= 1.96 GeV2)=0.318513 for nf=4
—————————————————————————— x=0.000010 ---------------mm—— -
SI(x= 0.0000100)=3.4695646e+00 GL(x= 0.0000100)=1.3074834e+01
UV(x= 0.0000100)=6.1120367e-03 DV(x= 0.0000100)=3.7959190e-03
US(x= 0.0000100)=5.9818110e-01 DS(x= 0.0000100)=5.9988948e-01
SS(x= 0.0000100)=5.3175774e-01

CH(x= 0.0000100)=0.0000000e+00 BT(x= 0.0000100)=0.0000000e+00
—————————————————————————— x=0.000020 ---------------mmmm—— -
SI(x= 0.0000200)=3.1153438e+00 GL(x= 0.0000200)=1.1469641e+01
UV(x= 0.0000200)=8.2564168e-03 DV(x= 0.0000200)=5.1210226e-03
US(x= 0.0000200)=5.4149612e-01 DS(x= 0.0000200)=5.4372565e-01
SS(x= 0.0000200)=4.6576141e-01

CH(x= 0.0000200)=0.0000000e+00 BT(x= 0.0000200)=0.0000000e+00

The above sample was produced with GraphAll=0 thus printing only values on
a small grid with minimum Q? = 1.96 GeV?* and not all values from minimum
Q? = 0.40 GeV?. For convenience, SI denotes singlet, GL gluon, UV and DV
are valence densities u — u, d — u, US, DS, SS are of the ¢+ ¢— ¥(nys)/n; kind
and CH and BT are (¢+ ¢)/2 and (b+ ?))/2

For graphing purposes, the output also goes into several datafiles with
names formed as g_densityORDER.dat where ORDER is LO, NLO or
NNLO respectively e.g. g_glLO.dat or g_.uvINNLO.dat.
columns of the particular density with the first column being z or Q?, de-
pending upon GraphVsX parameter (1-z, 0-Q*). Then the other parameter
is varied across columns. Here is the piece of g_cpNLO.dat file. The first
column contains the z value, the second is the charm density for Q? = 1.96
GeV? (where it is zero) and then the charm density for Q% = 2,3, .. GeV?:

Those contains

0.0000100000 0.0000000000e+00 1.0468420825e-02 1.3022045486e-01
0.0000200000 0.0000000000e+00  8.8559755303e-03 1.0970003578e-01
0.0000300000 0.0000000000e+00  8.0049032415e-03  9.8909559249e-02
0.0000400000 0.0000000000e+00  7.4395488912e-03  9.1758900075e-02
0.0000500000 0.0000000000e+00  7.0219632243e-03  8.6487022224e-02
0.0000600000 0.0000000000e+00  6.6940248888e-03  8.2352079221e-02
0.0000700000 0.0000000000e+00  6.4257535493e-03  7.8973989377e-02
0.0000800000 0.0000000000e+00  6.1998499386e-03 7.6132631291e-02
0.0000900000 0.0000000000e+00  6.0054517691e-03  7.3690103826e-02
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The above sample was produced with GraphVsX=1 thus printing z, not ()*
values in the first column. The GraphAll=0 was also set, thus only nice values
of x are used (0.00001, 0.00002, 0.00003, etc).

Also, if the necessary option (DoFortran=1) is set the output also goes into
the file suitable for reading by a GRV98-like Fortran program that interpolates
the data points and makes parton density functions. This program is used in
structure function calculations (the code is written in Fortran). The datafile
format has eight columns with all densities on the fixed grid (hard-coded into
the both evolution code and the interpolation program) in z and Q.

The sample follows:

Information line: first

+6.112E-03 +3.796E-03 +5.982E-01 +5.999E-01 +5.318E-01 +1.307E+01
+6.128E-03 +3.806E-03 +6.084E-01 +6.101E-01 +5.419E-01 +1.333E+01
+6.303E-03 +3.912E-03 +7.251E-01 +7.268E-01 +6.581E-01 +1.634E+01
+6.440E-03 +3.996E-03 +8.260E-01 +8.278E-01 +7.586E-01 +1.901E+01
+6.553E-03 +4.064E-03 +9.151E-01 +9.169E-01 +8.473E-01 +2.140E+01
+6.649E-03 +4.122E-03 +9.949E-01 +9.967E-01 +9.269E-01 +2.357E+01
+6.731E-03 +4.172E-03 +1.067E+00 +1.069E+00 +9.990E-01 +2.556E+01
+6.804E-03 +4.216E-03 +1.134E+00 +1.135E+00 +1.065E+00 +2.740E+01
+6.869E-03 +4.255E-03 +1.195E+00 +1.197E+00 +1.126E+00 +2.910E+01
+6.927E-03 +4.291E-03 +1.252E+00 +1.253E+00 +1.183E+00 +3.070E+01

Sample pictures of bottom densities are provided in [26] and also below
in Figs. 2.1 - 2.4
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2.7 Error code descriptions

Program error code description:

‘ message ‘ filename ‘ refer to

Threshold LO datafile | loader.c NNLO calculation

is missing with proper orders requires
the datafile from a previous
run in LO

Threshold NLO | loader.c NNLO calculation

datafile is missing with proper orders requires
the datafile from a previous
run in NLO

Wrong  Multicharm | main.c NNLOmultiOrderCHARM

factor should be 1 or 0

Wrong order factor

several modules

should be 0,1,2 for LO,
NLO, NNLO

File evolu- | main.c find the file and put into
tion_parameters.input working directory

does not exist

Wrong INT | main.c order and initial Q? are
Q2:increase it! incompatible

Wrong INT | main.c order and initial Q? are
Q2:decrease it! incompatible

Evolver: dont know | main.c wrong doBottom factor
how to proceed

Wrong Alpha switch | main.c check AlphaDoSepa-
factor! rateThreshold value

Wrong order factor | main.c check Order to be 0,1,2
while graphing

Wrong graphing | main.c check GraphAll value to be
factor 0,1

Wrong loadWgts | l-a-w.c, nl-a-w.c | check loadWgts to be 0,1

factor
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2.8 Conclusions

We have presented a multifunctional code for the direct z-space method
of solving the spin-averaged evolution equations for parton densities. The dis-
tinctive features of this code include analytic computation of the LO, NLO and
NNLO weights, NNLO heavy flavor threshold matching and NNLO evolution.

The code is very fast and accurate. For example for grid sizes not exceed-
ing 200 in Q* and 150 in « the NLO calculation with full weighs computed for
three values of ny and up to five decimal accuracy has a runtime well below
200 seconds. Also it is the only code that does the proper NNLO evolution
with NNLO heavy flavor matching conditions.

The program is also easy to use and complete documentation is available.
The code is well-tested both on specific test functions (e.g. see [16]) and on
actual densities (e.g. see [25]) in all (LO, NLO and NNLO) orders.
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2.10 Appendix A

Here we give the NNLO parametrizations of the splitting functions from

[29]. Note that Lo =1Inz and L; = In(1 — 2).
plE

First the parametrizations for the non-singlet splitting functions Pgg
are:

PEa(z) = 1185229 (1 — 2)7' + 1365.458 8(1 — z) — 157.387 L2 — 2741.42 22
—490.43 (1 — 2z) +67.00 L2 + 10.005 L3 + 1.432 L;
+ Ny {—184.765 (1 — z);" — 184.289 §(1 — z) + 17.989 L + 355.636 =°
— 73407 (1 — 2)Ly + 11491 L2 +1.928 L3} + P,(2),
PEE(z) = 1174.348 (1 — )71 4 1286.799 6(1 — z) + 115.099 L? + 1581.05 L,
+267.33 (1 — z) — 127.65 L3 — 25.22 L% + 1.432 L}
+ Ny {—183.718 (1 — 2)71 = 177.762 8(1 — 2) + 11.999 L? + 397.546 =
+41.949 (1 — 2) — LATT L2 — 0538 L3} + P@,(2),  (2.10.1)

and

Pt (z) = 1183.762 (1 — 2)7' + 1347.032 §(1 — 2) + 1047.590 Ly — 843.884 27
—98.65 (1 — 2) — 33.71 Ly + 1.580 (Lg + 4Lg)
+ Nj {—183.148 (1 — 2)7" — 174.402 §(1 — 2) + 9.649 L? + 406.171 22
+32.218 (1 — 2) +5.976 L2+ 1.60 L3} + PE,(2),
PEE(z) = 1182774 (1 — )71 4 1351088 6(1 — z) — 147.692 L? — 2602.738 2
— 170.11 + 148.47 Lo + 1.580 (Lg — 4 L3)
+ Ny {—183.931 (1 — z);"' — 178.208 §(1 — z) — 89.941 L, + 218.482 2°
+9.623 4+ 0.910 L2 — 1.60 L3} + P{,(2) . (2.10.2)

The parametrizations for Pl%)’s(z) and PP(PS)(Z) are

P (z) = Ny{(1 = 2)(=1441.57 22 4+ 12603.59 z — 15450.01) + 7876.93 z L3
—4260.29 Lo — 229.27 L2 + 4.4075 L3}

Ny {(1 — 2)(=704.67 2° + 3310.32 2* + 2144.81 z — 244.68)
+4490.81 2 Lo + 42.875 Lo — 11.0165 L3}, (2.10.3)

S
PE5(2)



and

P L(2)

PF(’ZS),B(Z)

with

PR(z) =

Ny {(1 — 2)(—229.497 Ly — 722.99 22 + 2678.77 — 560.20 2~
+2008.61 Lo + 998.15 L2 — 3584/27 2 Lo} + PLE,(2),
Ny {(1 — 2)(73.845 L2 + 305.988 Ly + 2063.19 = — 387.95 z?)
+1999.35 2L — 732.68 Lo — 3584/27 271 Lo}

+ PE,(2), (2.10.4)

N7P{(1 — 2)(—7.282 Ly — 38.779 2* + 32.022 z — 6.252 + 1.767 2™ ")
+7.453 L3} . (2.10.5)

Next we show the parametrizations of the off-diagonal singlet splitting

functions:

Pq(;,)A(Z) =
2

PDg(z) =

with

Pq(;,)Q(Z)

and

2
PO(z) =

P;;,)B(Z) =

Ny {—31.830 L3 + 1252.267 Ly + 1999.89 z + 1722.47 + 1223.43 L?
—1334.61 271 —896/3 2 Lo} + PCL(2),

Ny {19.428 L7 4 159.833 L7 + 309.384 Lj + 2631.00 (1 — z)
—67.25 L2 — 776.793 27 —896/3 2 ' Lo} + PUh(2),  (2.10.6)

= N7 {—0.9085 L — 35.803 L; — 128.023 + 200.929 (1 — z)
+40.542 Lo + 3.284 271} | (2.10.7)

13.1212 L} + 126.665 L3 + 308.536 L7 + 361.21 — 2113.45 Ly
—17.965 27" Ly + Ny {2.4427 L] +27.763 L3 + 80.548 L]
—227.135 — 151.04 L2 + 65.91 2 Ly} + PZh(2),
—4.5108 L] — 66.618 L3 — 231.535 L] — 1224.22 (1 — z) + 240.08 L}
+379.60 27 (Lo +4) + Np{—1.4028 LT — 11.638 L? + 164.963 L,
—1066.78 (1 — z) — 182.08 L2 + 138.54 27" (Lo + 2)}

+ PO(2), (2.10.8)
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with

P(Q)

99,2

(z) = N;7{1.9361 L + 11.178 Ly 4+ 11.632 — 15.145 (1 — z) + 3.354 Lg
—2.133 271} . (2.10.9)

Last we show the parametrizations of the diagonal singlet splitting func-
tions

PP (2) = 2626.38 (1 — 2)7' +4424.168 6(1 — 2) — 732.715 L? — 20640.069 =
— 15428.58 (1 — %) — 15213.60 L + 16700.88 2™ + 2675.85 2" L
+ Ny {=415.71 (1 — 2)7" — 548.569 §(1 — 2) — 425.708 Ly + 914.548 2*
—1122.86 — 444.21 L +376.98 ™" + 157.18 27" Lo}
+ Pg(j,)Q(Z)J

PP(2) = 267822 (1 — 2)7' +4590.570 §(1 — 2) + 3748.934 Ly + 60879.62 =
— 35974.45 (1 + 2%) 4 2002.96 L2 + 9762.09 2z~ + 2675.85 2~ ' L
+ Ny {—412.00 (1 — 2)7" — 534.951 §(1 — 2) + 62.630 L2 + 801.90
+1891.40 Lo + 813.78 LZ +1.360 27" 4+ 157.18 27" Lo}
+ PUy(2), (2.10.10)
with
P2 (z) = N2{-16/9 (1 —2);' +6.4882 6(1 — 2) + 37.6417 z* — 72.926 =

+32.349 — 0.991 Ly +2.818 27} . (2.10.11)
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2.11 Appendix B

Shown below are the renormalized OME’s used for threshold matching
calculations in NLO and NNLO (they correspond to the unrenormalized ex-
pressions given in Appendix C of [36] and in Appendix A of [30]). All OME’S
have been renormalized in the MS-scheme.

In particular the renormalized coupling «; is presented in the above
scheme for ns + 1 light flavors. Here the heavy quark H = (¢, b) is treated on
the same footing as the light flavors and it is not decoupled from the running
coupling in the VFNS approach. The (a;/47)?* coefficient in the heavy-quark

OME /ngsq is given by

2
N 1
AEISq’(Q) (m_Q) = CFTf{ l—S(l +z)lnz— 3—6 —14

i z
16 2 64
+4z + 3221 In? m_2 + lS(l + z2) In?z — (8 + 40z + ?22) In z
i
160 448 m?
_9—Z+16_482+TZ ] hl?
+(1 +2) [328172(1 —z) 4+ 161nzLiy(1 — z) — 16¢(2)In =

4 32 32
—§1n321 + (;—Z +8—8z— %ZQ)LiQ(l —z)

+(—§—i—8+82+2—222)4(2)+(2+102+§z2)1n22
_(@ 88 %22) 448 4 124 1600

—z Inz — — — - —
: 9

2222011
373 272 3 3Z+27Z}(’2 )

The a;/47 and the (as/47)?* coefficients of the heavy quark OME’s /Nlls;lg
are

A]S;j(gl)<m—2) =T l_4(22 +(1-2)?% m_Q] ’ (2.11.2)

and

- 2
A]SLjE;Z)(%) = {CFTf[(S — 16z + 1622) ln(l — Z)
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3 3
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32 272
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respectively. Now we present the renormalized expressions for the heavy-quark
loop contributions to the light-parton OME’s denoted by Ay p. The coefhi-
cients of the (a;/47)* terms in Ay, g and Ay, g are

8/ 1 4 4 m?
AN (T o o 425(1—2) | In? =
qq,H /,L FLf 3 1_2 N 3 3Z‘|‘ ( Z) n,u2
MEU +81+z1 _8_88
— - nz—+—-——-—z
9 \1—2 31— 9 9

+6(1 — 2)(136C(2) 4 %)] In Z‘—j

3

14+ 2z 20
In?z+ —1
+1—z(3 Ty HZ)

224 1 4 2
—|—§(1—2)lnz—|——< ) ——ﬁ

27 HETANT
8 73
ri1— )30 + e+ ) b, 2101)
and
16 8 5 m?
() - 3
0 128 32 32 16 m?
=2 O L (1 - )|
l9 9+9Z+(3z gty Z)]n/ﬂ
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z

1 /448
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respectively. The coefficients of the /47 and (as/47)? terms in Ay, g are
2 2
s,(1) [ m 4 m )
Agg’H<MQ) Tfl35(1 —Z)ln F‘| 5 (2116)
and
16 16
ggH( 2) {C’FTJ:[ 1—|—Z)1HZ—|-3——|-4 42—?,22]
16 8 8
CaT — 4 —z— —2?
+Afl(1 ) NS 321
16 , m?
2 16 .
+< CrTy|8(1 4+ 2)In 2—|—(24—|—402)1n2—3——|—64—322
z
80 , 16 80 1
—— 46(1 — CuT 1 | —
57 T8l Z)]Jr 4 f[3( +2)lnz+ 3 (1—2)+
184 232 152 184 , 16 m?
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4
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~2 180 — 482 — 2422 —158(1 — 2)
z
4 1 4
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1 1 556
+—1224 + — — 628 + 548z — 70022
27 1—=z2 +
10
+5901 —z)} (2.11.7)
respectively.

The definitions for the polylogarithms Li,(z) and the Nielsen functions
Snp(2), which appear in the above expressions, can be found in [37].
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Chapter 3

MS Parton densities with NNLO heavy flavor
matching conditions
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3.1 Introduction

Quantum chromodynamic predictions for experimental cross sections and
distributions in perturbation theory rely heavily on accurate knowledge of
parton densities. Several groups [1], [2], [3] have extracted these densities from
global fits to data with the latest theoretical information on MS coefficient
functions. At present the evolution of these densities via the Altarelli-Parisi
(AP) equations [4] uses the information on leading order (LO) and next-to-
leading order (NLO) [5] splitting functions. Unfortunately the next-to-next-to-
leading order (NNLO) splitting functions are not known but some interesting
pieces of information are available [6], [7], [8]. The complete splitting functions
should be known soon.

The description of heavy quarks within this analysis recently received a
lot of attention due to the data on deep inelastic production of D* mesons
from HERA [9], [10]. The global fitting groups have adopted different ap-
proaches. The CTEQ5 analysis describes charm and bottom densities via
the so-called ACOT prescription [11], which is a one-loop matching condition
between three-flavor and four-flavor densities at the scale g = m. and a cor-
responding one-loop matching between the four-flavor and five-flavor densities
at the scale g = m;. This is not done in the MRST density sets. Instead they
impose matching conditions that the logarithmic derivative of the deep inelas-
tic structure functions with regard to the scale g should be continuous, see
[12] for details. This yields different charm and bottom densities. The GRV
group [13] adopt the approach that one does not need any densities other than
a three-flavor MS set because the convolution of these densities with the NLO
heavy quark coeflicient functions provided in [14] yields an excellent fit to the
presently available data on F, .(z, Q% m?), which is stable under scale varia-
tions. By never taking the limit that m. — 0 the theoretical prediction has
no collinear singularity problem. Note that the physical threshold for a heavy
quark antiquark pair is at Q*(1 —x)/z = 4m*. However the physical threshold

C

is distinct from the matching scale where one switches between parton density
sets.

The parton densities with ny and ny + 1 flavors are related by a set
of operator matrix elements (OME’s). The order a? OME’s were recently
derived in [15]. They contain terms with In'(p?/m?) i = 1,2 as well as non-
logarithmic terms. They have the property that the ny 4+ 1 flavor densities
vanish in LO and in NLO when the scale g = m. In NNLO there are finite z-
dependent discontinuities at this scale, which we refer to as NNLO matching
conditions. In this respect the matching conditions on the parton densities
are similar to those for the two-loop running coupling constant derived in

60



[19], [20]. These NNLO matching conditions can be important numerically.
Note that the running coupling constant is not small at the scale p = m..
The charm density constructed from the two-loop matching conditions has
been used in a recent study of variable flavor number schemes for the charm
component of the deep inelastic structure functions [16]. Here we would like
to present a complete set of parton densities for light (u,d,s,g) and heavy
(c,b) partons which satisfy the NNLO boundary conditions and are evolved
with NLO splitting functions. When the three-loop anomalous dimensions
become available they can be included in this analysis. At present our study
primarily focuses on the effects of the discontinuous matching conditions and
the differences between the resulting three, four and five-flavor parton densities
as the scale u increases through the regions m. < p < my and g > my
respectively.

In Sec. II we present some technical details about our choice of input
parton densities and the two-loop matching conditions. All densities are de-
rived in the MS scheme. Then in Sec.III we give plots of the parton densities.
Finally comparisons are made between the presently available NLO sets and
our (NNLO) set. A discussion of the solutions of the evolution equations is
given in the Appendix. We intend to make our computer package for these
densities available in due course.
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3.2 The parton densities

We present a consistent set of MS parton densities containing three, four
and five flavors for scales satisfying p < m¢., m. < g < mp and g > my,
respectively. The evolution of the densities is done with our own computer code
written in C+4 and some details are given in the Appendix. The code uses
the direct z-space method to solve the evolution equation [4] similar to that in
[17] and allows us to evolve both light and heavy parton densities in LO, NLO
and NNLO (the latter using the NLO weights). The weights for the calculation
are computed analytically from the LO and NLO [5] MS splitting functions
thus removing possible instabilities in the numerical integrations. Hence the
program is very efficient and fast. The results from the evolution code have
been thoroughly checked against the tables in the HERA report [18]. We use
weights in LO and NLO for ny = 3,4,5 for evolving the gluon f;(nf,:l;,;f),
the singlet quark densities qu(nf, x, ?), the non-singlet valence quark densities
fii(ng,z, p?) and the non-singlet sea quark densities ffs(nf,x,/LQ). As the
scale increases across the charm and bottom matching points the sets are
redefined to include densities for the ¢ and b heavy quarks. The program
allows us to use LO, NLO or NNLO matching conditions for the generation of
the heavy flavor densities.

The number densities are defined as

fk_,;(nf,:c,ﬁ) = fk(Tlf7$7M2) - fl;(TLf7$7M2)7 k= uad

Fes(ng @, p?) = fulng, @, 1®) + falng,z,p0%), k=u,d,s,c,b

(3.2.1)
S 2 Q 2
fq (nfvfcmu ) = ka-}—fc(nfv:cmu ) (322)
k=1
1
5,2, 0%) = frsr(ng, @, u®) - n_fqu(nfaxafﬁ)' (3.2.3)

We start our LO evolution using the following input from [2] at u2 =

1o =0.26 (GeV/c?)?

$fu_g(3,:l?,ﬂg) = $‘UU($7ﬂiO)

= 1.239 22 (1 — 2)>™ (1 — 1.8y/z + 9.52)
xfd—c?(gaxaﬂg) = l’dv(.fl?,ﬂio)

= 0.614 (1 —2)° zu,(z, pi o)
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e(fa(3, 2, 10) = fa(3, 2w, 10)) = aA(x, pio)
= 0.23 2% (1 —2)"* (1 - 12.0y/z + 50.9z)
e(fa(3,2,m0) + fa(B, 2, 15)) = x(u+d)(z, pio)
= 1.52 2% (1 - 2)*" (1 — 3.6/ + 7.82)
vfy(3, 2, m5) = wglw, pio)
= 1747 2" (1 — 2)?®
$f8(37 Z, /’L?J) = $f§(37 Z, ﬂ?)) = $5($7 :U‘io)
= as(z,uio) =0. (3.2.4)
Here A = d — u is used to construct the non-singlet combination. We start

the corresponding NLO evolution using the following input from [2] at 2 =
#2310 = 0.40 (GeV /c*)?

-ffu—ﬂ(gaxaﬂg) = 'zuv(zwu%\ILO)
= 0.632 2°* (1 — 2)>% (1 + 18.22)
e fa-a(3,2,p5) = wdy(@, 1X1o)
= 0.624 (1 —2)"° zu,(z, piro)
”C(fg(?),av,ug) _fﬂ('gvxa:u(?))) = xA($7M12\ILO)
= 0.20 2°* (1 — 2)"** (1 — 13.3y/z + 60.0z)
o(fa3, 2, p0) + fa(3,2,p5)) = w(u+d)(@, o)
= 1.24 2°%°(1 — 2)®° (1 — 2.3v/x + 5.72)

ofy(3, 2, 5) = wg(z, piro)
= 20.80 z'°(1 — 2)*!

xfs(3, @, M?J) = af5(3, , :u?)) = as(x, /LIZ\ILO)
= as(x, pfpo) = 0. (3.2.5)
From the above densities we form the combinations that we evolve and step
across thresholds. The NNLO densities for pi;o < p? < m? are replaced with
NLO densities. The heavy quark masses m, = 1.4 GeV/cQ, my = 4.5 Ge\//c2
are used throughout the calculation together with the exact expression for the

running coupling constant ay(u?), represented as the solution of the following
differential equation

day(p?) _ _@ 2 b o,

dln(p?) — Am () = qgz o) (3:2:6)
or in the implicit form
2
L 47 51 l 47 ﬁl] o
In — = — = In|—— 4+ =, 3.2.7
Ao Boel®) B [BoosG?) B 327



where g = 11 — 2ns/3 and 1 = 102 — 38ns/3. The values for L&SER)&CT are
carefully chosen to obtain accurate matching at the scales m? and m} respec-
tively. We used the values ﬁ%&%@ = 299.4, 246, 167.7, 67.8 MeV/c* respec-
tively in the exact formula (which yields oP*A%T (m%) = 0.114, oEXAT (m}) =

0.205, aFXACT(;2) = (.319, oFXACT (42, ) = 0.578 ) and A" = 204,
175, 132,66.5 MeV /c? respectively (which yields a©(m%) = 0.125, aL9(m?) =
0.232, al©9(m?) = 0.362, oL°(ui,) = 0.763 ) for the LO formula. Note that we
have not used the two-loop matching of the running coupling constant a(u?)
at the same scales from [19],[20] to focus on the matching conditions on the
flavor densities. Numerically the discontinuity in the running coupling con-
stant across the charm threshold is aproximately two parts in one thousand,
which is far too small to affect our results.

Three flavor evolution proceeds from the initial y? to the scale p* = m? =
1.96 (GeV/c*)2. At this point the charm density is then defined by

Ferslng +1,m?) = aX(ng,m?)[ALI(1) @ f5(ns,m?)
+AS,(1) ® f5(ng,m?)] (3.2.8)

with ny = 3 and a; = ay/4x. We have suppressed the x dependence to
make the notation more compact. The @ symbol denotes the convolution
integral f®@g¢g = [ f(x/y)g(y)dy/y, where + <y <1 The OME’s Ag%(;ﬁ/mg),
/leg(,uQ/mz) are given in [15]. The reason for choosing the matching scale p at
the mass of the charm quark m, is that all the In(u?/m?) terms in the OME’s

vanish at this point leaving only the nonlogarithmic pieces in the order o?

OME’s to contribute to the right-hand-side of Eq.(2.8). Hence the LO and
NLO charm densities vanish at the scale p = m.. The NNLO charm density
starts off with a finite z-dependent shape in order a?. Note that we then
order the terms on the right-hand-side of Eq.(2.8) so that the result contains a
product of NLO OME’s and L.LO parton densities. The result is then of order
a? and should be multiplied by order a? coefficient functions when forming the
deep inelastic structure functions.

The four-flavor gluon density is also generated at the matching point in
the same way. At p = m, we define

By +1,m2) = fS(ng,m?)
+a2(ng,m?)[A5, o(1) ® fH(ng,m?),
+45,0(1) @ f5 (g, md)] (3.2.9)
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The OME’s AS ,(p?/m?), AS, o(u?/m?) are given in [15]. The four-flavor

light quark (u,d,s) densities are generated using

fk+E(nf+17m3) = fk+fc(nf’m3)
+ai(ng, m) A1) @ fryr(ng,m?). (3.2.10)

The OME A (p*/m?) is given in [15] and the total four-flavor singlet quark
density in Eq.(2.2) follows from the sum of Eqs.(2.8) and (2.10). The nonsin-
glet density then follows from Eq.(2.1). In Eqgs.(2.9) and (2.10) ny = 3. The

remarks after Eq.(2.8) are relevant here too.

Next the resulting four-flavor densities are evolved using the four-flavor
weights in either LO or NLO up to the scale pu? = 20.25 (GeV/c*)2. The

bottom quark density is then generated at this point using

Juslng + Lmi) = aX(ng, m)[AGS(1) © f5(ng,m})
+A5,(1) ® f5(ng,m})] (3.2.11)

and the gluon and light quark densities (which now include charm) are gener-
ated using Eqs.(5.2.8)-(5.2.10) with n; = 4 and replacing m? by m}. Therefore
only the nonlogarithmic terms in the order a? OME’s contribute to the match-
ing conditions on the bottom quark density. Then all the densities are evolved
up to higher p? as a five-flavor set with either LO or NLO splitting functions.
This is valid until ¢ = m; ~ 175 GeV/c® above which one should switch to a
six-flavor set. We do not implement this step because the top quark density
would be extremely small.

The procedure outlined above generates a full set of parton densities
(gluon, singlet, non-singlet light and heavy quark densities,) for any = and
p? from the three-flavor LO and NLO inputs in Eqgs.(5.2.4) and (5.2.5). Note
that one could also use the formulae above in fixed order perturbation theory.
In this case the four-flavour densities are defined by extending the integrals on

the right-hand sides of Eqs.(2.8)-(2.11) to

2
s (M
fc-I-E(nf—I_lv:uQ) = a’s(nﬁ/ﬁ)A%g(ﬁ)®fgs(nf7:u2)

25, () @ f5(ns)]. (321
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fgs(nf + 17ﬂ2) = fgs(nhNQ)

//L ¢ ¢ ¢
+A5,0(5) ® £ (ny, MQ)] ; (3.2.13)
and
Jrar(ns + Lp®) = foa(ng o)
2

7
—l-ai(nf, )quSQ( ) @ fk+k(nf7,u ),
(3.2.14)

0

for ny = 3 and m? < p* < m}. Then the five-flavor densities are defined by

2

fos(ng +1,0%) = as(ng,p )AQg( )®f(”f’ Y)

+a2(ng, p )[APS(”—Q)@@fS(nf, 2)
‘|‘AQ)g< )®f(nf, )], (3.2.15)

for ny = 4 and p* > mj. Also one should replace ny = 4 and m? by m}
in Eqgs.(2.12)-(2.14). In this case no four-flavor or five-flavour evolution is
made so the logarithmic terms in p?/m? and/or y?/m} are not summed. We
will show the differences between this fixed order perturbation theory (FOPT)
treatment and the evolved treatment in the next Section.



3.3 Results

Here we present results from the evolution of the parton densities. The
inputs are the three-flavor densities at po in Eqs.(2.4),(2.5) which are evolved
up to the scale g = m, = 1.4 GeV/c’. During this evolution the number
of light flavors ny = 3 in both the MS splitting functions and the running
coupling constant.

We start by giving the four-flavor densities, where ny = 4, in the region
between m. < p < my which follow by evolution from the matching con-
ditions in Eqgs. (2.8)-(2.10). We present results at the scales p? = 1.96, 2,
3, 4, 5, 10 and 20 in units of (GeV/c?)?. First we show the charm density
NN (4 2 4?) in two ranges (a) 107° < z < 1 and (b) 1072 < z < 1 in Figs.
3.1(a) and 3.1(b) respectively. We notice that this density starts off negative
at small = but it is positive at large x so that the momentum sum rule is
satisfied. To show the effect of resumming the logarithmic terms via the evo-
lution equation from the charm threshold as compared with just computing
the integrals in Eq. (2.12) at all scales g we show in Fig. 3.1(c) the ratios
RYNEO (2 4?) = zegvorvep (4, @, p?)/zcropr (4, , u?). Here FOPT stands for
fixed order perturbation theory. The effects of the evolution are especially
significant at small  and large x. Notice that the discontinuity at = ~ 0.01
is caused by the change in sign of the NNLO charm quark density. For a
comparison we have also shown the NLO results from the MRST98 set 1 [3]
and CTEQ5HQ [1] parton density sets in Figs. 3.1(d) and (e). These groups
use different input densities so a direct comparison does not have any true
significance. Nevertheless our density is larger than the MRST98 set 1 result
and smaller than the CTEQ5HQ result at small z and large p?.

In Fig. 3.2(a) we show the four-flavor gluon density z¢g™"™©(4,z, 4?) in
the same range 107> < z < 1 for the same scales as in Fig. 3.1. We also show
in Fig. 3.2(b) the ratios RgNNLO(:E,,uQ) = zgevowvep (4, z, p*)/zgropt (4, T, 4?)
for the same scales, where we use Eq.(2.13) for the FOPT density. The effect
of the suppression of the charm density at small x translates into an increase
of the gluon density at small z. For comparison we show the three-flavor
NLO gluon density in Fig. 3.2(c). We have also shown the NLO results from
the MRST98 set 1 and CTEQ5HQ parton density sets in Figs. 3.2(d) and
(e). These densities do not increase as rapidly at large p? because they use
different inputs.

In Fig. 3.3(a) we show the singlet quark density X VX0 (4, 2, 4?) in the
range 107° < z < 1 for the same scales as above. Then is Fig. 3.3(b) we
show the ratios RYNMO(z, u?) = z¥gvorvep (4, =, p?) /zXropr (4, x, u?), where
we use Eq.(2.14) for the FOPT density. This ratio shows increases or decreases
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depending on the z and p? values. It is appreciably smaller at large p?, which
reflects the differences between the three-flavor and four-flavor gluon densities.
For comparison we show the three-flavor NLO density in Fig. 3.3(c).

Next in Fig. 3.4(a) we show the nonsinglet density zo™":9(4, 2, u?), where
o = (u+u)/2, in the range 107° < z < 1 for the same scales. In Fig. 3.4(b)
we show the ratios RYLO(z, u?) = zogvowvep (4, z, u?)/xoropr (4, x, u?) for
the same scales, where we use Eq.(2.14) for the FOPT density. The ratio is
significantly below unity at large =. In Fig. 3.4(c) we show the three-flavor
NLO result. The difference is small.

We complete our presentation of four-flavor densities by showing in Fig.
3.5(a) the strange quark density zs"N-9(4, z, 4?) in the range 107> < = < 1. In

Fig. 3.5(b) we show the ratios Ry (z, p?) = xs"VOWED (4 2 p?) /xs"OPT (4, 2, p?)

for the same scales. In Fig. 3.5(c) we show the three-flavor NLO density, where
again the difference is small. We have checked that these densities satisfy the
momentum sum rule for four flavors.

Now we move up in scale to consider p > my = 4.5 GeV/c* which is the
five-flavor region. The parton densities in this region are now generated from
the previous four-flavor set by using the conditions in the Eqs.(2.8) -(2.10)
with ny = 4 at g = mi and replacing m? by mj. Here we show plots for the
scales p? =20.25, 25, 30, 40, and 100 in units of (GeV /c?)2.

The first density to consider is the bottom quark density. We show in Fig.
3.6(a) zbNNLO(5 2, 4?) in the range 107° < x < 1 for the scales mentioned
above. Notice that it is negative for small z and small p*, The region 1072 <
x < 1 is shown in Fig. 3.6(b) to demonstrate that the density is positive for
large x. In this respect it is like the charm density in the region just above the
four-flavor matching point. In Fig. 3.6(c) we show the ratios RYNC(z, p?) =
abEVOWVED (5 & 1) [zt O (5, 2, u?), where Eq.(2.15) is used for the FOPT
density. Here it is clear that the effect of the evolution is appreciable at small
z. For a comparison we have also shown the NLO results from the MRST98
set 1 and CTEQ5HQ parton density sets in Figs. 3.1(d) and (e). Note that
these groups use different input densities so a direct comparison does not have
any true significance. Nevertheless both bottom densities are larger than ours
at small z and large p?.

The five-flavor charm density zc"N(5, z, 4?) is shown in Fig. 3.7(a) in
the range 107° < x < 1 for the same scales. In this case the ratios of the
evolved densities to the FOPT densities is very close to unity for all z and p?
values so we do not show a plot. For a comparison we have also shown the
NLO results from the MRST98 set 1 and CTEQ5HQ parton density sets in
Figs. 3.1(b) and (c). The former has a smaller density at large p? and the
latter a larger density.
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Next we show in Fig. 3.8(a) the gluon density zg"":©(5,z, %) in the
range 107° < a < 1 for the same scales. In this case the ratios of the evolved
densities to the FOPT densities is very close to unity for all x and p? values so
we do not show a plot. In Fig. 3.8(b) we show the corresponding three-flavor
NLO density. The latter is larger at small z and large u?.

In Fig. 3.9(a) we show the nonsinglet quark density zX VL0 (5, 2, u?),
where ¢ = (u + )/2, in the range 107° < z < 1 for the same scales. Also in
this case the ratios of the evolved densities to the FOPT densities is very close
to unity for all  and p? values so we do not show any plot. In Fig. 3.9(b) we
show the corresponding three-flavor NLO density.

In Fig. 3.10(a) we show the nonsinglet quark density xo™""O(5 2, u?) in
the range 107° < z < 1 for the same scales. Also in this case the ratios of the
evolved densities to the FOPT densities is very close to unity for all z and p?
values so we do not show any plot. In Fig. 3.10(b) we show the corresponding
three-flavor NLO density.

In Fig. 3.11(a) we show the strange quark density zs"“O (5, z, ?) in the
range 107> < x < 1 for the same scales. Also in this case the ratios of the
evolved densities to the FOPT densities is very close to unity for all z and p?
values so we do not show any plot. In Fig. 3.11(b) we show the corresponding
three-flavor NLO density. We have checked that the five-flavour densities
satisfy the momentum sum rule.

The above plots demonstrate that the NNLO matching conditions do
influence the parton densities appreciably in regions just above p = m, and
g = my. This has consequences for the analysis of HERA experiments because
a lot of the data is at small  and small values of the scale ?. In fact all
of the data for z < 107* has Q> < 100 (GeV/c’)?. Even for the scale
much larger than m; the boundary conditions are still important. For p > 10
Ge\//c2 for example the rapid rise of the five-flavour gluon density means that
it dominates over all the other parton densities at small z. There is roughly
a ten percent difference between the three-flavor and five-flavor densities at
small z and large p?, which can be important for precision phenomenology.

ACKNOWLEDGMENTS
This research was partially supported by the National Science Foundation
grant PHY-9722101. We thank M. Botje, E. Laenen and W.L. van Neerven

for very useful discussions.

69



3.4 Appendix A

All the splitting functions in the Altarelli-Parisi (AP) equations can be
expanded as a perturbation series in «; into LO and NLO terms as follows

pP=prOy ;—;PU). (3.1.1)

The non-singlet combinations of the ¢,(¢.) to ¢s(¢s) splitting functions, where
the subscripts r, s denote the flavors of the (anti)quarks and satisfies r,s =
1,--+,ny, can be further decomposed into a flavor diagonal part proportional
to 6,s and a flavor independent part. In LO there is only one non-singlet
splitting function P, but in NLO it is convenient to form two combinations
from P, and F,; as follows

P+ = qu + qu’
P = qu — qu. (3.1.2)

These splitting functions are used to evolve two independent types of non-
singlet densities, which will be called plus and minus respectively. They are
given by
fi+ = fé\ls(nfrxnug)
17 = fslng, e ). (3.13)

The easiest way to explain the indices in these equations is by explicitly giving
the combinations we use. For j = 1,2

fi=u—u,f; =d—d, (3.1.4)

which are used for all flavour density sets. Then for three-flavor densities
1t =1,2,3 and we define
ff=utu-3@3)/3, ff=d+d-X(3)/3,
ff=s+s5-%(3)/3, (3.1.5)
where (3) = qu(3) =u+u+d+d+ s+ 35 These densities should be used
for p < m.. For four-flavor densities ¢ = 1,2,3,4 and we define
frmuta- S, ff=dtd- S/,
ff=s+5-%(4)/4, ff=ct+e—X(4)/4, (3.1.6)
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where ¥(4) = ff(él) = c+ ¢+ X(3). These should be used for m. < g < my.

For five-flavor densites ¢ = 1,2,3.4,5 and we define

ff=ut+u—-3%(5)/5, ff=d+d—%(5)/5,

fF=s+5-%(5)/5,  [ff=ct+c—%(5)/5,

ff=b+b-%(5/5, (3.1.7)
where X(5) = fi(5) = b+ b+ %(4). These should be used for p > my.

If we define t = In(p?/(1(GeV /c?)?) then the AP equations that we need
to solve are

OfF(x Qg 1dz T
7fla(t’t) = #/ﬂg —P+(;)f2-+(z,t), (3'1'8)

z

of (x,t) a.S(t) /;d_ZP_(E)fj_(Zat)a (3.1.9)

ot o2r

Of,(x,t) as(t) /1 dz

W a;(:) /Ild_Z[Pq (f)f,f(z,t)+qu(§)fj(z,t)] (3.1.11)

where for g < m. we set 1 = 1,2,3, j = 1,2, qu = X(3) and the gluon is
a three-flavor gluon. When m, < p < my, we use ¢ = 1,2,3,4, 5 = 1,2,
ff = ¥(4) and the gluon is a four-flavor gluon. Finally when p > my, we set
i=1,2,3,4,5,j = 1,2, f? = X(5) and the gluon is a five-flavor gluon.

The densities should satisfy the momentum conservation sum rule

[ [ ) + e, )+ e, ) 4 e ) + 25,2

+2c(w, p?)0(p? — m?) + 2b(x, y)0(p* —m?) + g(x, 4?)| do =1.
(3.1.12)

As the quark constituents carry all the charge, isospin, strange, charm and
bottom quantum numbers of the nucleon they should also satisfy the other
standard sum rules for the conservation of these quantities.

There are several methods to solve these equations. Among them the
most popular are to use Mellin moments (used by [23], [24], see full list of
references in [18] and [17]) and to use the direct z-space solution (as in [21],
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[17],[24], see also [18] ). Also the authors in [22] describe a method involving
Laguerre polynomials, that dates back to early paper of [5].

Our choice of direct z-space method is justified by the necessity to step
densities across matching points using LO, NLO and NNLO boundary condi-
tions. The procedure of doing this in the Mellin moment method would involve
converting densities to and from Mellin moments several times. Using the di-
rect z-space method is much more intuitive and straightforward. The main
features of this method are linear interpolation over a grid in = and second-
order interpolation over a grid in t. Let us describe the method in more detail
to point out where we differ from the work in [17].

First we consider the z-variable in the evolution. Consider the right-hand-
side of the evolution equation (3.1.8) for non-singlet density

dz zg

Ie) = [ 2P (E) ¢(2) ) (3.1.13)

zZ zZ z

where zg < 2 < 1 and
q(z) =z f(x), (3.1.14)

and
o< 21 < . < Tp < Tpyp =1, (3.1.15)

with ¢(z,41) = ¢(1) = 0. Between grid points z; and x;41,  is chosen so that

q(z) = (1 —y)q(z:) + yg(zit1) (3.1.16)

with y = (¢ — ;) /(231 — ;). Using this relation we convert the integral into
a sum

n+1
I(zg) = E w(x;, xo)q(x;), (3.1.17)
1=0
where the weights are
‘w(l‘o;l‘o) = 51(51750)
w(x, x0) = S1(Sit1,8:i) — S2(8:,8i-1) , (3.1.18)
where s; = zq/z; and
. v d
Si(uv) = —= [P~
u v dz
U, = —v)P(z)—. 3.1.1
Sa(u0) = —— [z =v)P(2)5 (3.1.19)

We have calculated these integrals analytically and the results are in the com-
puter program. This leads to the final formula describing the grid for the =
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variable. Note that the weights w(®) and w(" include LO and NLO splitting
functions respectively. Thus, for the singlet case, we have

dlzoX(x o Qs

s 91 ¢
+ [wgg)(xi, To) + %'wg;)(;vi, xo)] zig(x;). (3.1.20)
Now consider the variation in the variable ¢t. For each z; we pick a grid

in t labelled by distinct points ¢;. Then the example the non-singlet equation
becomes

' as(t;) & ot _
¢ (vi,1)) = ;”Zp&?)(m,xiw .“)wﬂs)(:ck,xi)] alarty), (3.1.21)
T k=1 Zﬂ-

where q‘(xi, t;) denotes the derivative with respect to ¢ evaluated at ¢t = ¢;. In
compact notation this equation can be rewritten as

!

q; = wg; + 5, (3.1.22)

with S being the sum of the terms on the right hand side of (3.1.21) excluding
the j-th term.

For ¢ between the grid points ¢;_; and ¢; we interpolate the parton density
using quadratic interpolation as follows

q(z;,t) = at* + bt + c. (3.1.23)

Thus we relate the value of ¢ at the point ¢; to that of ¢ at the point ;4 by

1 7 7
gz, t;) = q(zi, tjio1) + §[q (wi,t5) + q (i, t;-1)] ALy, (3.1.24)

where At; =1; —t;_4. This equation can also be written more compactly as

1 ! !
(g;-1 +q;)At;. (3.1.25)

q; = qj-1+ 3

The resulting system of two linear equations (3.1.25) and (3.1.22) for ¢; and
q; has the solution
o 2q;-1 + (Q;—l + S)Atj
%= 2 —wAt; ’

(3.1.26)

and yields q;- from (3.1.22). Applying the same procedure to the gluon and
singlet equations Eqgs.(A.10)-(A.11) involves four equations because we have
to compute both the densities and their derivatives.
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The evolution proceeds from the initial uj = piy (or pa = pxLo) to the
first matching point at the scale u? = m?. Next the charm density is introduced
in the NNLO (a?-order terms) and all the four-flavor densities are evolved from
the boundary conditions in Ens.(5.2.8)-(5.2.10). This evolution continues up to
the transition point p? = m}, where the same procedure is applied to generate
the bottom quark density. At that matching point all five-flavor densities are
evolved starting from the boundary conditions in Eqs.(5.2.8)-(5.2.11) up to all
higher p? scales.
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Chapter 4

Comparison between variable flavor number
schemes for charm quark electroproduction

7



4.1 Introduction

Charm quark production is one of the important reactions used to extract
the gluon density f,(z, u*) of the proton in deep inelastic lepton-hadron scat-
tering, especially when the Bjorken scaling variable z is small. However this is
only true when the deep inelastic process is of the neutral current type and the
charm component of the proton wave function is negligible. In this case the
charm quark is produced in the so-called extrinsic way. For neutral current
processes with only light partons in the initial state this means that the Born
approximation in perturbative QCD is given by the virtual vector-boson gluon-
fusion process [1]. Notice that the light partons consist of the gluon and the
three light flavors u, d, s together with their anti-particles. Furthermore if the
virtuality of the exchanged vector boson in deep inelastic lepton-hadron scat-
tering satisfies Q* < M% then the vector boson is represented by the photon
only and the contribution of the Z-boson is negligible. Extrinsic charm produc-
tion also receives next-to-leading order (NLO) contributions from boson-quark
subprocesses, which could hamper the extraction of the gluon density. Fortu-
nately this is not the case at HERA, where the experiments [2], [3] are carried
out at small x, because the gluon density overwhelms the light flavor densi-
ties completely. Moreover the NLO quark initiated processes are suppressed
by at least one power of the strong coupling constant a,(u?) with respect to
the Born contribution to the boson-gluon fusion reaction. The quantity g in
the running coupling constant and the parton densities represents both the
renormalization and factorization scales respectively, because it is convenient
to chose them to be equal.

In the literature one has adopted two different treatments of extrinsic
charm production, which are known as the massive and massless charm de-
scriptions. The former, advocated in [4], treats the charm quark as a heavy
quark (with mass m.) and the cross sections or coefficient functions have to
be described by fixed order perturbation theory. Notice that due to the work
in [5] the perturbation series is now known up to second order and the NLO
massive charm approach agrees with the recent data in [2] and [3]. The latter
treatment, which has been rather popular among groups which fitted parton
densities to experimental data, treats the charm quark as a massless quark so
that it can be represented by a parton density f.(z,u*), with the boundary
condition f.(z,p?) = 0 for p < m.. Although at first sight these approaches
are completely different they are actually intimately related. It was shown in
[6] that the large logarithms of the type In((Q)?/m?), which appear in the per-
turbation series when Q% > m?, can be resummed in all orders. The upshot

c?
of this procedure is that the charm components of the deep inelastic struc-
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ture functions F; .(z,Q* m?), where i = 2, L, which in the first approach are

written as convolutions of heavy quark coefficient functions with light parton
densities, become, after resummation, convolutions of light parton coefficient
functions with light parton densities which also include a charm quark density.
This procedure leads to the so-called zero mass variable flavor number scheme
(ZM-VFENS) for F;.(z,Q?) where the mass of the charm quark is absorbed
into the new four flavor densities. To implement this scheme one has to be
careful to use quantities which are collinearly finite in the limit m, — 0. From
the above considerations it is clear that the first approach is better when the
charm quark pair is produced near threshold because the mass of the quark
is important in this region and it cannot be neglected. On the other hand
far away from threshold, where also Q? > m?, the large logarithms above
dominate the structure functions so that the second approach should be more
appropriate. Both approaches are characterized by the number of active fla-
vors involved in the description of the parton densities which are given by
three and four respectively. Therefore one can also speak of three and four
flavor number schemes (TFNS and FFNS respectively). Each scheme has a
different gluon density so that the momentum sum rule is always satisfied.

As most of the experimental data occur in the kinematical regime which is
between the threshold and the region of large ()% a third approach has been in-
troduced to describe the charm components of the structure functions. This is
called the variable flavor number scheme (VFNS). A first discussion was given
by Aivasis, Collins, Olness and Tung [7], where a VFNS prescription called
ACOT was given in lowest order only. The ACOT results were compared with
the NLO results in [8]. We will give our NLO version of a VENS scheme in this
paper and we call it the CSN scheme to distinguish it. A different approach,
generalized to all orders, was given in the papers by Buza, Matiounine, Smith
and van Neerven [6],[9], which we denote by BMSN. Finally another version
of a VFNS for the charm component of the structure function was presented
by Thorne and Roberts in [10], which will be called the TR scheme. Note that
a proof of factorization to all orders for the total structure function, which
includes charm and light parton production, was recently given in [11].

The difference between the various versions can be attributed to two in-
gredients entering the construction of a VFNS. The first one is the mass fac-
torization procedure carried out before the large logarithms can be resummed.
The second one is the matching condition imposed on the charm quark den-
sity, which has to vanish in the threshold region of the production process.
It will be one of our goals to elucidate these differences in the next Section.
Another problem, which was not clarified in the papers above is that the mass
factorization cannot be carried out on the level of the charm components of the

79



structure functions alone, because one also needs contributions coming from
the light parton components of the structure functions. The latter can be
attributed to all heavy charm quark loop contributions to gluon self energies,
which appear in the virtual corrections to the light parton coefficient func-
tions. These corrections have to be combined with contributions from gluon
splitting into heavy charm anti-charm quark pairs, which belong to the charm
components (not the light quark components) of the structure functions. In
this paper we will give a much more careful analysis than has been done pre-
viously in the literature. Another aspect of any VFNS approach is that one
needs two sets of parton densities. One set only contains densities in a three
flavor number scheme whereas the second one, which also includes a charm
quark density, is parametrized in a four flavor number scheme. Both param-
eterizations have to satisfy the relations quoted in [6]. At this moment the
latter set is not available in the literature and we would like to fill in this gap.
Starting from a three flavor number set of parton densities recently published
in [12] we will construct a four flavor number set of densities satisfying the
relations in [6].

In Sec.Il we give a general discussion of the CSN description for heavy
quark electroproduction, and explain the problems with mass factorization,
collinear singularities and threshold dependence in the heavy flavor compo-
nents of the structure functions. We then specialize to charm quark electro-
production in Sec.IIl; working to second order in the running coupling con-
stant ag(p?). We first present details about the charm quark density. Next
numerical results are shown for the structure functions in the various schemes.
Analytic results for the contributions from the Compton scattering reaction
with an invariant mass cut are relegated to an Appendix. Finally we want
to emphasize that we only consider inclusive charm quark production in this
paper. Exclusive charm production which involves transverse momentum and
rapidity distributions will be dealt with in another paper.
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4.2 Discussion of variable flavor number schemes

In this section we discuss two different representations of the deep inelas-
tic structure functions in variable flavor number schemes. One is proposed
here (CSN). The other (BMSN) was proposed in [6] and [9]. The former starts
from mass factorization of the exact heavy quark coefficient functions whereas
the latter only applies this procedure to the asymptotic expressions for these
functions. In both schemes the special role of the heavy quark loop contribu-
tions to the light quark coefficient functions in combination with heavy quark
production via gluon splitting was overlooked. This will be repaired in this
paper. Furthermore in both schemes there is a lot of freedom in the choice
of matching conditions, which are needed to connect the structure functions
presented for ny and ny + 1 light flavors. Different matching conditions lead
to different threshold behaviors, which have consequences for the description
of the structure functions at small ? and large z.

Limiting ourselves to electroproduction, where deep inelastic lepton-hadron
scattering is only mediated by a photon, the light parton components of the
structure functions are defined by

RS () Q2 ) =

]

SHONSE (c;% (15 5) + €L o, g—i,f—j))

+ Frsn(ng, 12 ® (CNS (nf Q—Q) + CYIRENS (nf Q0 QQ))] (4.2.1)
s e i m2’ 12 ’

where ® denotes the convolution symbol in the parton Bjorken scaling variable
z. In this expression the C; (¢« = 2,L;k = ¢,¢) denote the light parton
coefficient functions and the e, represent the charges of the light flavor quarks.
The quantities CZY,ERT only contain the heavy quark loop contributions to the
light parton coefficient functions. Furthermore fgs(nf, ©?) stands for the gluon
density while the singlet (S) and non-singlet (NS) light quark densities, with
respect to the SU(ny) flavor group, are defined by

Frpr(ng, 1) = fulng, 1) + frlng, 4)



f nfa# ka-l—k ny, 1 )

1
8 (ng,1%) = fryr(ng, p®) — n—fff(nfa/LQ)- (4.2.2)

Finally we have set the factorization scale equal to the renormalization scale
. The light parton coefficient functions have been calculated up to order o?
n [13]. The contributions to CX,ERT appear for the first time in second order
perturbation theory and can be found in [14]. For our further discussion it
will be convenient to distinguish between the numbers of external and internal
flavors. The former refers to the number of light flavor densities whereas the
latter denotes the number of light flavors in the quark loop contributions to
the virtual corrections. They are not necessarily equal. Some of the coefficient
functions have the external flavor number as an overall factor. To explicitly
cancel this factor we have defined the quark and gluon coefficient functions in

Eq. (5.2.1) as follows

Q Q
Cio(ns, ) Ciq (s, 2

2 2 2 2
g, %) 0, %) g, D) =g €y (g, ) (4:2.)
m p?

where PS represents the purely singlet component. Hence the remaining ny
in the argument of the coefficient functions marked with a tilde denotes the
number of internal flavors. The same holds for the ny in the parton densities.
However the argument ny in the structure functions is external and it refers
to the number of parton densities appearing in their expressions. The parton

densities satisfy the renormalization group equations. If we define

0 9,

p=,2 9 - 2 4.2.4
"o +ﬁ(nf,g)ag, g =g(ng, p”) (4.2.4)
then
Dfé\ls(nfmu?) = _7£S(nfag)f;\ls(nf7ﬂ2)
Dflf(nfvlﬁ) = _’}/Sl(nfvg)fls(nﬁ:uz) kvl =4q,9 (425)

where 7 represent the anomalous dimensions of the operators in the operator
product expansion (OPE).
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The heavy flavor components (Q = c,b,t,Q = ¢,b,t) of the structure
functions Fy and F7, arise from Feynman graphs with heavy flavors (@ and @
with mass m) in the final state and are given by

FEXACT(n Ze (ng, )®LPS<n Q? QQ)
k bEN: fr m2’

(2

2 2 2 2
S 2 S Q°Q 2 NS Q* Q
+ 15 (g, p1°) @ Li,g(n " ) + frar(ng, p1®) @ L (nf7 ok —2)]

2 2
2 S PS Q Q S S
+e5 [fq (ng. pu?) @ HEY (ny, 5 M_) + £5 (ng, 1?) @ HE, (ny, oy

(4.2.6)

where eq represents the charge of the heavy quark. Furthermore L;; and
H;, (i =2,L;k = q,g) represent the heavy-quark coefficient functions which
are exactly calculated order by order in perturbation theory. In Figs. 4.1-4.5
we have shown some of the Feynman diagrams contributing to the coefficient
functions up to order o?. Like in the case of the light-parton coefficient func-
tions C;; they can be spht into (purely)-singlet and non-singlet parts. The
distinction between L, and H; can be traced back to the different (virtual)
photon-parton heavy-quark production mechanisms from which they originate.
The functions L; 3, H; ; are attributed to the reactions where the virtual pho-
ton couples to the light quarks and the heavy quark respectively. Hence L;
and H; in Eq. (5.2.6) are multiplied by e} and 622 respectively. As has been
mentioned in the introduction the heavy quark coefficient functions contain
large logarithms of the type In'(Q?/m?) when Q? > m? which can be removed
from the former by using mass factorization. To do this we first have to split
the heavy quark coefficient functions L;; into soft and hard parts

2 )2
N

bl bl
m2,u

2 )2 2 )2
Listng, 05 %) = L 8,2 20 st SANTEL)
where A is a cut on the invariant mass sgq of the heavy quark pair. The cut
can be determined by experiment. It is chosen such that in the limit m — 0 all
mass singularities reside in the soft parts so that the hard parts are collinearly
finite. Taking Fig. 4.5 as an example we mean by hard that one detects a QQ-
pair with a large invariant mass which is experimentally observable if s55 > A.
In the case sgg < A the (QQ)-pair is soft and becomes indistinguishable from
other light parton final states which contain contributions from virtual heavy
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quark loops. Next we add the soft parts to the other contributions to FMHT

in Eq. (5.2.1) and the mass factorization proceeds like

~ Q*

Ci(ny, ,u?) CVIRT( Q_2 Q_2)+LSOFT( A Q* QQ) _

Y Y Y
"m?’ 2 m?’ p?

2 2

Asz(nf, a )®Czl(nf7 e —)

Q* @

2
) @ CCSNSOFT () A . ?)7 k,l=4q.qg. (4.2.8)

i
+Aw(ny, m2 i0L,Q )
Here C;; o are those parts of the light parton coefficient functions C;; which
contain the heavy quark loops. The hard parts of L;; are left in FZ-%(ACT in
Eq. (5.2.6) and do not need any mass factorization. Furthermore we have the
condition that the dependence on the parameter A cancels in the sums so

CCSN< ng, Q2 Q_Q) — CCSN,SOFT<nf7A Q2 Q_Q)

,k,Q "2’ 112 0“kQ "m2 2
2 2
HARD Q° Q .
+ L ( A, ol ?)7 (4.2.9)

where g in the hard parts only represents the renormalization scale. The
coefficient functions H; satisfy the relations *
2 )2 2 )2
Hoplng. 2 QQ ) = Aulng, L) Cia (ng QQ, Q—Q) kl=Q,q,9(4.2.10)
m2’ p m2’ p
Notice that mass factorization applied to the functions H; , and H;, occurring
in FEXACT (5.2.6) leads to the coefficient functions CCSN The latter also follow
from mass factorization of the functions H; g which represent processes with a
heavy quark in the initial state. The quantities H; ¢, which do not appear in
FZ-%ACT, together with the corresponding operator matrix elements (OME’s)
Agq are characteristic of variable flavor number schemes. The procedure above
transfers the logarithms In‘(y?/m?), appearing in LZ-Si)FT and H; x, to the heavy
quark operator matrix elements Az o and Agg. The latter are defined by (see

'In order to help the reader, who is more familiar with the notation in [7], one can

make the following comparison. For instance Eq. (7) in the latter reference ff(l) is

equal to our Agg). Similarly in Eq. (8) >, wg(gl) = HY and 2o wg(@o) = H((g

Y 2y
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[6] for details of renormalization and mass factorization)
Awg = (K| O(0) | k) kil=gq,9,

Agr = (k| 0g(0) k) k=0Q,q,9. (4.2.11)

Note that the O; are the light quark and gluon operators and in Ay, g we only
retain contributions from subgraphs which contain heavy quark (Q) loops.
The quantity Og represents the heavy quark operator. Here we want to stress
that the operators are sandwiched between quark and gluon states. This will
cause mass singularities of the type lni(,uQ/mQ) to appear in a similar way as
they appear in partonic cross sections.

The heavy quark coefficient functions defined in the CSN scheme in Egs.
(5.2.8)-(5.2.10) are collinearly finite and tend asymptotically to the massless
parton coeflicient functions presented in Eq. (5.2.1) i.e.

Q* Q* Q?

lim CipY ‘)= < k= . 4.2.12
Q21£>n ( ng, m2’ ’MQ) 7k(nf7 ,u? )7 Q7q7.g ( )

In particular we have

Q2 CSN Q2 M2
Cix(ny, 2 —5 )+ Q;gn .G kQ(nfv ICEi

2
) = Ci7k(7lf + 1, %) 5 (4.2.13)
so that the number of internal flavors is enhanced by one unit.

The CSN scheme above has similarities with the VFNS schemes proposed
in [7], [10]. The decomposition of the L, into soft and hard parts has not been
discussed previously. However one must address this issue because the mass
singularities in L; ; and CVIRT separately have such high powers in In(Q?*/m?)
that they cannot be removed via mass factorization. Another feature is that
in the limit m — 0 the final state invariant energies in the reactions which
contribute to these two types of coefficient functions become equal. Hence
L;j and CX,ERT have to be added so that the leading singularities cancel and
the remaining ones are then removed by mass factorization according to Eq.
(5.2.8). Notice that the the total coefficient functions L;; cannot be moved
to FMSHT because this would contradict the definitions of the latter structure
functions where only light partons are observed in the final states. Therefore
it is sufficient to transfer the LSOFT to the FFSHT since they contain the same
mass singularities as the L; . If A is chosen small enough, the heavy quarks
are unobservable in a measurement of F*'“HT Note that the problem of the
separation of L;; into soft and hard parts is not needed for the total structure
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function FMCHT 4 FZ-%ACT. The all order mass factorization of the latter is
shown in [11].

To illustrate the procedure above we carry it out up to order a?. The
coefficients in the series expansion are defined as follows

o0 o0
— — n gy(n) _ ny(n)
Ci,k - Z as 7 k ’ Hi7k - Z asHi,k ’ Li7k - Z asLi,k 9
n=0 n=2

Ay = S arAY | with aSEZ—S. (4.2.14)
— ™

Up to second order the mass factorization relations become

2 2 2
CVIRT,NS,(Q)(Q_ [SOFTNS( ( 7 Q QQ) _ ANS,(Z)(N_Z)CNS,(O)
m

1,9 mz) + 1,9 mz’ [ 79,Q

2 2 2 2
K NS,(1) Q CSN,SOFT,NS,(2) { Q" Q p
—Bogn (—mQ) cy (%) + ¢ (A, %55.%5), (4215

44 2 m?’ p?
with
2 2
VIRT,NS,(2), @7 Q% (o) _
Cig (m_Q) = FO)(W)CM . (4.2.16)

Here F(3)(Q?/m?) denotes the two-loop vertex correction in Fig. 4.6. This
function satisfies the decoupling theorem which implies that it vanishes in
the limit m — oo. The heavy quark coefficient functions L?IS( )
calculated in [15] and, after their convolution with the partonic densities,
yield contributions to the structure functions which behave asymptotlcally hke

In®(Q?/m?). These logarithms are canceled after adding #®(Q?/m?) in Ref.

[14] to L?I,? SOFT.) \which contains the same mass singularities as LSS’(Q) (see

the remark below Eq. (5.2.7)). To obtain the hard and soft parts we divide
the integral over sgg in the graphs of Fig. 4.5 in two regions i.e. s > sgg > A
and A > 555 > 4 m* which we denote by HARD and SOFT respectively. Here
59 and s denote the CM energies squared of the Q@) system and the incoming

have been

photon-parton state respectively. The hard and soft parts are presented in the
Appendix. Finally 5y = —2/3 denotes the heavy quark contribution to the
lowest order coefficient of the S-function in Eq. (2.4). We must change the
running coupling constant when we change schemes.

The mass factorization of the heavy quark coefficient functions H;; is
simpler. Here we get
HPS,(Q)(Q2 QQ) _ Agi,(z)( 2 )CCSN NS,(O)(QZ) N CCSN,PS,(Q)(Q2 QQ) 7

. _—, v ) = =
1,9 m2 qu m2 Q@ m?2 1,9 m2 MZ
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Hfs,(l)(Q_Q) _ Ag%(l)(ﬂ )CQSN,NS,(O)(QQ) +CCSN,NS,(1)(Q2 Q2)7

iQ m2) T

HS,(I) (Q_Q) _ AZ;I) (%)CSSN,NS,(O) (%Z) + CS;N,S,(l) (2_27 ff_j) 7

(4.2.19)

Hs,(z)(Q_2 Q_2) _ AS,(Z)(N_Q)C_CSN,NS,(O)(QQ)+CCSN,S,(2)(Q2 QZ)

b9\ 27 112 Qg \,2/ 1@ m2 0,9 m2’ 112
2 2 )2
S,(1)( K CSN,NS,(1) Q_ Q_ 9 ¢
+AZ (m2)®cm <m2’u2)' (4.2.20)

In the expressions above we have only given the arguments on which the
coefficient functions and operator matrix elements depend, like ny, Q*/m?, or
Q*/p? (at least up to that order in perturbation theory). Furthermore we have
dropped the convolution symbol when the corresponding coefficient function
behaves as a é-function of the type 6(1 — z). The heavy quark coefficient
functions correspond to the following processes

HS;I) Y +g—Q+Q Fig 4.1

HY® 0 495 Q+Q+g Figs. 42,43
Wy +9(@) > Q+Q+4q(q) Fig. 44
Lig® 0 " +4(@) > Q+Q+4q(q) Fig. 45
Hig” © v +Q—Q

Hig™W : 7 +Q—-Q+g Fig 47 (4.2.21)

In the reactions above the virtual corrections to the lowest order processes

are implicitly understood. The coefficient functions L?Iqs’@), qus’(?) and HS;Q),
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computed in the MS-scheme, can be found in [5] whereas the Hig’(l) are
computed in the context of QED in [16]. The MS-scheme is also chosen for
the OME’s in Eqgs. (4.2.15)-(4.2.20) which are computed up to order o2 in [6]
and [15]. This also holds for Ag%’(l) in Eq. (4.2.18) which is presented in the
context of QED in [17]. Furthermore the running coupling constant appearing
in the quantities above contains ny active flavors.

The mass singular logarithms of the type In(u*/m?), appearing in the
OME’s above, are absorbed by the light parton densities. This procedure leads
to parton densities which are represented in the ns+1 light flavor scheme. For
the light parton densities one obtains

2

2
i p
fearlng + L") = quSQ(nﬁ =) ® frynlng. u* )—I_Ag)qS,Q(nfvﬁ)

2
I i) + Ay (ns, 5) @ fingp?) k= 1omy (1222)

The parton density representing the heavy quark in the ny 4 1 flavor scheme
is

2
forqns +1,4%) = Agi(% )@ [ (ng,u?)

—I—AQg<nf, 2) ®f (ng, 1?). (4.2.23)

Finally the gluon density in the ny + 1 flavor scheme is

2

Flng+1,p%) = ASqQ(nfa —) @ P (ng, p?)

2

+A99Q(nf, ) ® [;(ng, p?). (4.2.24)

One can check (see [6] ) that the new parton densities satisfy the renormaliza-
tion group equations in Eq. (5.2.5) wherein all quantities ns are replaced by
ny+ 1. Up to order ag the above relations become

fk—l—%(nf—}—hl'ﬁ) = fk—}—fc(nfalu‘Q)

2
b /’11 [ ‘
+a3(ny, MQ)AZ%?)(—W) ® foyr(ng, u?), (4.2.25)

2

Java(ns + 1%) = ang, ) A (55) @ £ (ng, %)
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2 2
~PS, H %S, ©
tad(ng, 1) [Agy ™ (5) @ £ng i) + A5 (55) @ Fng, )]
(4.2.26)
2
(1), M
fy (g + 1, 0%) = £ (ng 1) + as(ng, 1) Ay Q(—5) @ 5 (ng, %)
2 2\ [ 45:(2) p S (2) I
(g, 1) [ Agd (5) @ [ g i) + AGQ( ) @ £ (g, )]
(4.2.27)

Notice that in passing from an ns-flavor to an n ¢+ 1-flavor scheme the running
coupling constant becomes

2
© o
as(ng +1,p%) = aslng, 1)[1 —as(ng, p*)fogIn( )], (4.2.28)

which has to be used in all expressions for the structure functions in the CSN
scheme. Using the mass factorization relations in Eqs. (5.2.8), (5.2.10) and
the redefinitions of the parton densities in Eqs. (4.2.22)-(2.24) we obtain from
Eq. (5.2.6) the heavy quark components of the structure functions in the CSN
scheme are

FEN(ny +1,A,Q% m?) =

2 . L2 oSNNS ] Q* Q*
eg | fora(ns + 1, 17) @ {Cig (nf‘|‘ 757?)

2 N2
CCSNPS 1, Q° Q
+Cig ( nf+ " m2’ u:))

el 2 CSN,PS Q2 Q2
+D 0 flng + 1,07 @G0 ( ng+ 1, )

2
=1 /'L

S 2 CSN,S Q2 Q2
+fg(nf+17:u)®ci,g (f+1 Iug)

Q* Q*
5[5 o+ 0 10 (o2, 8. )

S 1 2 LHARD,S( A Q_z Q_Z)
+fg(nf+ 7#)® 2,9 g, ’mQ’/ﬂ



HARD,NS (nf,A,Q—2 Q_Q)] . (4.2.29)

2
+fk+E(nf + 171“ ) ® Li,q m2’ M?

In a similar way one obtains from Eq. (5.2.1) the light parton components of
the structure functions in the CSN scheme are

ng
CSN,LIGHT 2 oy 2
. 7 —
F (ng, A, Q7,m") g ek[
k=1

k3

& 2 5PS Q2 CSN,SOFT,PS Q2 Q2
z;fm(”f +1,1%) @ (CFF(ns, ?) +Cie (nr A, 25, 75)

bl
m?’ p?

S 2 5S Q2 CSN,SOFT,S Q2 Q2
—I_fg (nf—|_17ll’L )® Ci,g(”f??) —I_Ci,g,Q (nf7A7ﬁaﬂ_2)

+Frr 1. 12 CNS( Q_Q) CCSN,SOFT,NS( A Q_2 Q_Q)
k-l—k(nf +1L,p")® g \TUf> e +Cig0 ng,! " 2 .
(4.2.30)

Up to a given order Eqs. (4.2.29) and (4.2.30) do not differ from the structure
functions presented in Eqgs. (5.2.6) and (5.2.1) respectively as long as one uses
fixed order perturbation theory. This can be checked up to second order when
the coefficient functions in Eqs. (4.2.29) and (4.2.30) are substituted using
the mass factorization relations in (4.2.15)-(4.2.20). The difference arises if
the logarithms of the type In’(u?/m?), which show up in the parton densities,
are resummed using the renormalization group equations in Eq. (5.2.5). This
resummation induces corrections beyond fixed order perturbation theory which
become noticeable for y? > m? On the other hand we do not want that the
resummation bedevils the threshold behavior of the structure functions. In
this region the best representation is still given by Eqgs. (5.2.1) and (5.2.6).
Therefore one has to look for a scale at which expressions (4.2.29) and (4.2.30)
coincide with those given by fixed order perturbation theory in (5.2.6) and
(5.2.1) respectively. Finding this scale is the most important issue in CSN as we
will show below. Both expressions FZCSN and fOSNHIGHT
group invariants. Hence they satisfy the renormalization group equations (see

Eq. (5.2.4) )

are renormalization

DFEN =0 D FFPHSHT = ¢ (1.2.31)

?

The same holds for the total structure function in the variable flavor number
scheme which is defined as

FON(ng +1,Q% m?) = FENUHT A2 )

K3
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+ESN (ng + 1,A,Q% m?). (4.2.32)

One can now show that for large Q?, F¥N(n; + 1, Q% m?) turns into the same
expression as Eq. (5.2.1) where ny in the light parton coefficient functions C; x
is replaced by n; + 1 and C®T = 0 for the n; + 1 heavy flavor piece.

After having discussed the general procedure to construct CSN scheme
structure functions we now turn to the practical issues. For asymptotic values
of Q?, far above the heavy QQ threshold at (1 —z)Q?/z = 4m?, all coefficient
functions CCSN in Eq. (4.2.29) can be replaced by the light parton coefficient
functions so that, after having removed LHARD, one gets the heavy quark
components of the structure functions in the so-called zero mass variable flavor
number scheme (ZM-CSN). However near threshold at low Q% and large z
there is a problem, which has not been solved satisfactorily in the literature.
In this region one would like the FZCSN to vanish in the same way that the
F, EXACT vanish. Unfortunately the coefficient functions CSSN do not vanish in
the threshold region due to the presence of the OME’s Ask and the functions
HNS which describe processes with ONE heavy quark in the final state (see Eq.
(4 2 21) ) contrary to H;, and H;, which originate from reactions with at least
TWO heavy quarks (Q and Q) in the final state. Only the latter functions
have the correct threshold behavior. In the literature two ways have been
proposed to obtain reasonable threshold behaviors. The first one was given
in a paper by Aivasis, Collins, Olness and Tung [7], which will be denoted as
the ACOT boundary conditions. The second one was proposed in a paper by
Thorne and Roberts [10], which we shall call the TR boundary conditions. In

both approaches the structure functions have the properties

Fi,Q(Q27 mZ) FEXACT(nf7 Q2 2) for Q2 < m2 7

Fio(@%m?) = F SN (ny +1,Q%m?%) for @Q*>m?,  (4.2.33)
where the parton densities satisfy the boundary conditions at u? = m?
fk—l—fc(nf + 17 €, M?) = fk+]€(nf7$7ﬂ2) )
fQ+Q(nf+17I7/’L2) =0 27

fylng + L, p®) = fylng, 2, p4). (4.2.34)

Notice that there is no relation between the scale p, chosen in these boundary
conditions, and the production threshold of heavy quarks (1—=z) Q*/z > 4 m?.

!Note that in the existing parton density sets fQ+Q(nf + 1,2, 1?) also vanishes
for u? < m?.
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If one e.g. takes p* = Q* and Q* < m? all terms in Eq. (4.2.29), where the
heavy quark density is multiplied with CSSN, vanish in spite of the fact that
heavy flavors are still produced as long as = < Q*/(Q* +4 m?). On the other
hand it is possible that @* > m? and = > Q*/(Q* + 4 m?) which implies
a non-vanishing heavy quark density with no heavy quark pair production.
Therefore the value for Q? chosen in Eq. (4.2.33) is a little arbitrary and
no condition is imposed on x. Since we do not have any alternative we shall
choose the same value of ? as in Eq. (4.2.33) above which FZ»%(ACT turns into
FCSN. Another problem is is that the boundary conditions in Eq. (4.2.34)
do not agree with the relations in Eqs. (4.2.22)-(4.2.24) if the computations
are extended beyond order a? which happens in the MS-scheme. In this case
the continuity at u? = m? is changed into a discontinuity. Finally there is
a problem with the heavy quark density if we choose an arbitrary value for
p* in forg(ns + 1,2, p?%). In deep inelastic scattering one very often chooses
p* = Q% If @* < m?® one has to know fo,q(ns + 1, z, p*) for values p* < m?
Which are not specified in Eq. (4.2.34). Furthermore the OME’s do not vanish
for p? < m?* so that CCSN # H; . (see Eqgs. (4.2.17)-(4.2.20)). Hence in Eq.
(4.2.33) Fig # FEXACT for * < m? so that the threshold behavior will be
spoiled. Therefore one has to avoid chosing p? < m? which can be achieved
by the prescription given by ACOT in [7]

2

/L2:m2—|—kQ2<1—@) fOf 622>77”627

p? =m? for Q* <m?, (4.2.35)

with & = 1/2 and n = 2. In this way one gets CCSN = H;j for Q* < m?
at least up to order as;. For higher orders one has to use the relations in
Eqgs. (4.2.22)-(4.2.24) instead of those given in Eq. (4.2.34) as the latter only
hold up to order a,. The new conditions are presented up to order a? in Eqs.
(4.2.25)-(2.27).

In the TR prescription one first chooses p? = () and then requires

FiCSN(nf + 1,@2,m2) loz=mz = FiEXACT(nf7Q27m2) lo2=m2
dFZ-CSN(nf + 17 Qz’ mz) | B dFZ-EXACT(nf, QQ,mZ) |
din(@/m?) T T (@ my) T
(4.2.36)

Using the mass factorization relations in Eqs. (4.2.17)-(4.2.20) the TR bound-
ary conditions lead to new heavy quark coefficient functions CCSN which have
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nothing to do with the reactions in Eq. (4.2.21). For instance the lowest or-
der coefficient functions in the TR prescription corresponding to the reaction
74+ Q — Q in Eq. (4.2.21) vanish at the QQ threshold although this pro-
cess only contains one heavy quark in the final state. Moreover, as already
admitted by the authors in [10], this procedure breaks down beyond order a;
because there are more coefficient functions than relations between them. An-
other problem is that it is unclear in which subtraction scheme one is working
since the subtraction terms in [10] have nothing to do with the usual OME’s
except in the limit Q% >> m?. For example in order a, the subtraction term
needed for HNS’(U in Eq. (4.2.18) is not given by AgSQ’(l). The same holds for

H; g(l) in Eq. (4.2.19), which gets another subtraction than given by A%’;U.
From the theoretical viewpoint the boundary conditions in Eq. (4.2.36) seem
very unattractive to us because the relations between the coefficient functions
CCSN (k= (Q,q,9) and the actual parton reactions are broken and the scheme
is unknown. Notice that the parton densities in [10] are still presented in the
MS-scheme.

A different VFNS from that discussed above has been proposed by Buza,
Matiounine, Smith and van Neerven in [6], [9], which we call the BMSN
scheme. In the latter it was advocated that only when the large logarithms
dominate the heavy quark coefficient functions do they have to be removed
via mass factorization so that they can be resummed via the renormalization
group equations. In the BMSN scheme we need the asymptotic heavy quark
coefficient functions defined by

2 )2 2 )2
Q- © )= H™M (n 9 Q—), (4.2.37)

Q;g;ﬂ H; k(nf7 27 0,k " m2’ /fLQ

which behave like

2 2 2 2
FASYMP, (1) () 7Q_7Q_ ~ d a,; In" Q_ In? Q_ 7 4.2.38
( f m2 /L2) sn%‘:gl J <m2) (MZ) ( )

with a similar behavior for LASYMP In the BMSN scheme FEXACT is given by
Eq. (5.2.6) except that L, — LHARD analogous to the CSN. The asymptotic
heavy quark structure functions, ‘denoted by F ASYMP, are given by the same
expressions as presented for F| Z-%(ACT where now all exact heavy quark functions

are replaced by their asymptotic ones. Up to second order the latter can be

found in [15]. The functions LZSSFT ASYMPNS(2)nd LHARD ASYMPNS.(2) e

given in Appendix A. In the BMSN scheme the Charm components of the
structure functions are defined as

FEYSN (g + 1,0, Q% m?) = FEAT (g, A, Q2 m?)

K3

93



—Fg (g, A, Q% m?) + FiG (ny + LA, Q% m?) - (4.2.39)
with
FI (ng +1,A,Q%m*) =

2
€ lqu(nf +1,6%) @ CF (ny + 1, %) + fy(ng + 1, %)

N Q2 Q2
2C3, (ns +1,5) + fasalng + 1t € ns +1,7)

ny @i 2 ()2
HARD,ASYMP,PS Q° Q
+3[3 St + 1) 8 L (0. 2. %)
k=1 =1 m /1/
2 ()2
HARD,ASYMP,S Q° Q
—I_fgs(nf—l_lvllLQ)@Li,g (nf7A7W7_2)
I
2 HARD,ASYMP NS Q* Q°
+fir(ng + L, p") @ L, ’ (n ,Avﬁ’?) : (4.2.40)
The structure functions FZ%DF are obtained from the F;}SYMP via the mass

factorization relations in Eqgs. (5.2.7), (5.2.10) by making the replacements
H;, — H;‘},;,SYMP, Lip — LﬁEYMP and CZ-%SN — CNZ;C on the left and right-hand
sides respectively. Furthermore we have used the definitions for the parton
densities in Eqs. (4.2.22)- (4.2.24). Notice that if the coefficient functions,
indicated by LE}?RD’ASYMP, are removed from FZ%DF one obtains the structure
functions in the ZM-CSN. The light parton components of the structure func-
tions become

BMSN,LIGHT
Fi (nf7A7Q27m2) =

"5 nf QQ QQ
Z 6% [Z fl-ﬂ(”f + 17 IMZ) ® 6CszqS (nfv Av o _2)
k=1 =1 m H

S 2 S Q2 QQ
+fng+ 1,0 )®5civg(nf,A,ﬁ7?)

2 NS Q2 Q2
Ffer(ng + 1, u*) @ 6CN (anﬁ?)] : (4.2.41)
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with

2 )2 5 2 5 2 )2
0Cik (nf, A, %, %) =Cix (nf +1, %) + CX;RT (nf, %, %)
+LSOFT (nf, A, Q* Q_Q) _ GVIRTASYMP (n Q’ Q2)

Y Y Y
m?’ p? m2’ 2

Q* Q* 5 4
— LM (ny, ot =) (4.2.42)

I
The coefficient functions above satisfy the property that

: Q* Q*
1 6C; A =) =
Q21>>Haln2 ’k<nf m? N2)

Q* Q? .
A = . 4.2.43
fa= 27M2) ( )

m

2
C.. (nf 41, %) B LE};&RD,ASYMP <n
Using the relations in Eqs. (5.2.9), (4.2.12) one can make a comparison be-
tween the CSN and the BMSN schemes. In the asymptotic limit the heavy
quark components satisfy (see Eqs. (4.2.29), (4.2.39), (4.2.40))

lim FYSN(ny +1,A,Q% m*) = lim Fi?SN(nf +1,A, Q% m?)

4,Q

Q*>m? Q2>m?

— anz FIOF(ng +1,A,Q% m?), (4.2.44)

and the light parton components satisfy (see Eqs. (4.2.30), (4.2.41))

lim FZ_BMSN,LIGHT(nf7A’ QQ,mQ) — lim FZ-CSN’LIGHT(nf7A, QQ,mQ)

>
Q%>m? QR2%2>m?2

(4.2.45)

provided we impose the same boundary conditions on both schemes. From the
discussion above we infer that the only difference between the CSN and the
BMSN schemes can be attributed to the m?/Q?*-terms which are present in
CSSN. Such terms do not occur in the C; , appearing in FZ-gF if one chooses the
BMSN-scheme. In the next Section we will make a study where in Q? these

differences are noticeable.

95



96

4.3 Comparison between the CSN and the BMSN

scheme

In this Section we will make a comparison in the case of charm production
between the above CSN scheme and the BMSN scheme proposed in [6], [9].
For that purpose we construct a parton density set with four active flavors
from an existing three flavor set in the literature following Eqs. (2.22)-(2.24).
The charm quark density of our set will be compared with those in other
sets with four active flavors presented in [18] (MRST98, central gluon) and
[19] (CTEQ5HQ). Using our set we will study the differences between the
charm components of the structure functions Fo>N(ny+1) in Eq. (4.2.29) and
FLCMSN(nf + 1) in Eq. (4.2.39) in particular in the threshold region.

Since all coefficient functions are computed in the MS-scheme we choose
the leading order (LO) and next-to-leading order (NLO) parton density sets
presented in [12] which contain three active flavors only (i.e. u,d,s). This
implies that one has chosen ny = 3 for the anomalous dimensions. In order
to make this paper self contained we give some details here. In LO where the
input scale pg is chosen to be 2 = pio = 0.26 (GeV/c)* the input parton
densities are

= 1.239 2% (1 — 2)>™ (1 — 1.8v/z + 9.5z)

)
) = 0.614 (1 —2)*? zu,(3,z, i)
3.z, ui0) = 0.23 2% (1 — )" (1 — 12.0/x + 50.92)
)
)
)

r(u+d)3,z,ui0) = 1.52 2% (1 —2)”' (1 —3.6y/z + 7.82)
xg(3, 2, 4t g 1747 "% (1 — 2)**®

= z3(z,pui0) =0 (4.3.1)

( ) = 0.632 2% (1 — 2)>9 (1 + 18.22)

( ) = 0.624 (1 —2)"° 2u,(3, 2, piro)

(3,2, pio) = 0.20 2% (1 — 2)"** (1 — 13.3/z + 60.0z)

( ) = 1.24 2%%°(1 — 2)®° (1 — 2.3y/z + 5.7z)

( ) = 20.80 2'°(1 —a)*!

( ) = z5(x, pio) = 0. (4.3.2)

where A = d — u. Furthermore in [12] the heavy quark masses are m. =
1.4 GeV/c?, my = 4.5 GeV/c. In both sets the densities are evolved from



a very low starting scale, where it is necessary to use the exact numerical
solution for the running coupling constant a,(u?). The latter follows from the
implicit equation

In O I — é In _Ar é
A&E a /BOOCS(IMQ) 1302 lBOaS(MQ) 1302 7

2 38
fo=11—gng,  Bi=102— "y, (4.3.3)

and will be used in all the following formulae. Furthermore we adopt the values
AY 56 = 299.4,246,167.7,67.8 MeV which yield a,(5, M%) = 0.114. Notice

that the values for A, follow from the matching conditions

as(ng, An,,m?) = as(ny + 1, Anf+1,m2) . (4.3.4)

‘nf7

where for ny = 3 and ny = 4 one has to choose m = m, and m = m; re-
spectively. For the computation of Fi%XACT (5.2.6) and FZ{*CSYMP ((4.2.39) we
take ny = 3 for the parton densities and the running coupling constant in Eq.
(4.3.3). However for F{PN (4.2.29), FEMN (4.2.39) and FPF (4.2.40) we need
ng = 4 for the coupling constant in Eq. (4.3.3) and a parton density set with
four active flavors (i.e. u,d,s,c) when the scale p becomes larger or equal to
the heavy flavor mass m. For reasons which will be explained below our com-
putations are performed with parton densities represented in LO, NLO and
NNLO (next-to-next-to leading order). The LO densities are convoluted with
the order a? contributions to the coefficient functions. The NLO densities are
convoluted with the order a; parts of the coefficient functions. The zeroth
order contributions to the latter have to be multiplied with the NNLO densi-
ties. Notice that for ny = 3 we only need LO and NLO densities here since
the heavy quark coefficient functions in FLCXACT and F Z{*CSYMP start in order a.
Our sets with four active flavors are derived from the ones with three active
flavors by putting ny = 3 in Eqs. (4.2.25)-(4.2.27) starting at a specific scale
which we choose as p? = m?. Hence it follows that in LO or in zeroth order
a, one gets

};_%(47;,;77712) = ll;fk(gvxva)v

f2o(4,z,m?) = 0,

O m?) = O3, 2,m?). (13.5)
whereas in NLO or in first order o one obtains

i e,m?) = f[IP23,2,m?),
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i\—T}—LEO(Zlvxva) = 0,
N, z,m?) = fN93,2,m). (4.3.6)

Since the two-loop OME’s Ag}c, A;CQI?Q in Egs. (4.2.25)-(4.2.27) do not vanish
at u? = m? in the MS-scheme we find that in NNLO or in order a? the parton
densities are discontinuous at y? = m? while going from three to four flavors
le.

f}c\l—}l—\%o(47 Z, m2) 7é f}g\]{l—\%o(:gv Z, mQ) ’

e O am?) £ 00,

fgS’NNLO(ZL,:c,mQ) # fgS’NNLO(3,$,m2). (4.3.7)
Note that if we would drop the terms independent of In p? /m? in the two-loop
operator matrix elements the inequalities in Eq. (4.3.7) would become equal-
ities. Above g = m, all four flavor number densities evolve with ny = 4 (we
have not yet included a bottom quark density above g = m;). The evolu-
tion of the parton densities, given by the renormalization %roup equations in
Eq. (5.2.5), is determined by the anomalous dimensions %’(? (LO), 72-(]'1) (NLO)
and ’yi(f) (NNLO). Unfortunately the three-loop anomalous dimensions ’yZ»(J-Z) are
not known yet except for the moments N = 2,4,6,8 (see [20]). However an
analysis of the light parton structure function in Eq. (5.2.1) [21] reveals that
the contribution from ’yl-(f ) is less important numerically than the contribution
due to the two-loop coefficient functions computed in [13]. Hence our igno-
rance about the three-loop anomalous dimension will not appreciably alter
our results. Therefore our NNLO analysis is only determined by the boundary
conditions in Eq. (4.3.7) which only affects the charm density appearing in
FZ-?CSN, FZ»]?CMSN and Fif)CDF. The evolution of the parton densities above p? = m?
presented in [22], was performed using a computer program which implements
the direct z-space method (similar to that of [23]). The code is written in C++
and has the options to evolve densities in LO and NLO whereas the NNLO
option presently only uses the NLO anomalous dimensions. We have checked
that the evolution of the parton densities is in agreement with the results in
[24].

Before substituting the parton densities into the structure functions we
encounter a problem caused by the inequalities in Eq. (4.3.7). This happens
in the threshold region which, according to the ACOT boundary conditions in

Eq. (4.2.35), is defined by @* < m?. In this region one has to choose p* = m?
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so that F{°N(ny = 4) and FEM™N(n; = 4) are equal to F2XAT (ny = 3).
Notice that the latter has to be understood in the sense mentioned below
Eq. (4.2.38) where L;; — LE,CARD. However since ag(m?) is rather large
we have to truncate the perturbation series for the structure functions to
the desired order otherwise the threshold behavior of all the FCSN(nf = 4)

and FZ»]?CMSN(nf = 4) will be destroyed. Let us explain this for the BMSN
scheme in Eq. (4.2.39). The arguments for the CSN scheme proceed in an
analogous Way The conditions that the FEMN(ny = 4) = FEXACT (n; = 3)
for u?* = m? implies that the FASYMP( =3) in Eq. (4.2.39) are canceled by
the FZP’)CDF( = 4). Further we have to bear in mind that the FiFCXACT(nf =3)
and FZ-ACSYMP(nf = 3) are determined by the parton densities in the three
flavor number scheme whereas the Fif)CDF(nf = 4) are constructed out of the

four flavor number scheme parton densities. The latter have the form

Fr(d, e, m*)0 = fi(3,2,m*) O + O(a))]
fy (4, m) 0 = £33, 2, m?) Ol + O(a)]

2, mt PN = 33,0, mtNOO(0l) + 53,0, mPMO0(a?)
(4.3.8)

If these densities are substituted in FPDF(nf =4) in Eq. (4.2.40) one obtains
additional terms of order o and a? in the perturbation series which are not
canceled by FASYMP( = 3). Notice that the latter are only computed up to
order a?. This effect is Caused by multiplying the four flavor number densities
with the coefficient functions C; ;, corrected beyond zeroth order in «;. To avoid
these higher order terms we propose the following formulae for the structure

functions in the CSN scheme

2
Fig"(ng +1,A,Q% m?) = lfg%o(nf + 1P Crg e )(Q—2)

m

s NS,(1) ( Q* QQ)

Y
m?’ 2

—|—Cls(nf + 17M2) {fQ+Q(nf + 17# ) ®

FFNO(ny 4 1, ) @ C 1)(Q— Q—Q)}

Y
m?’ p?

CSN,NS,(2 Q2 Q2
tal(ng +1,1%) {fé;EQ(nf +1,4%) @ (Ci,Q @ (ny + L)
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2 2 ny 2 2
_I_C(?SNPS (Q Q )) +Z l—|—l nf—l—l “ )®CZCqSN,PS,(2)(Q Q )

#30 + 1) 0 e (L D ]

m?’ p?

nf Q2
tal(ng + 1,12 Y ef fifp(ng + 1, %) @ Ly TN (A, 20) 0 (43.9)

2
=1 ’TTL

Notice that from the perturbative point of view the heavy quark density

fgﬁQ starts in order as(p?) so that after multiplication with CCSN NS and

CSSN’PS’(Q) the product becomes of order o?(u?). Hence these coefficient func-

tions did not appear in the mass factorization relations (4.2.17)-(4.2.20) since
the latter are carried out up to order a?(u?). Since the heavy quark density
in CSN has to be treated on the same footing as the light flavor densities, in
particular after resummation of the terms in lni(;[‘)/mQ), all densities are con-
sidered to start in zeroth order in perturbation theory. This explains the form

of of the above expression. Furthermore the coefficient functions CCSN NS,(2)

and CSSN PSR which originate from parton processes with an heavy quark in
the initial state have not been calculated yet. Therefore we have to approxi-

mate them by the replacements

CSSN,NS,(Q)( j‘|‘1 Q2 32) —>CNS()( il ffz)

CSN,PS,( Q Q CSN,PS,( Q Q2 .
Cop (ﬁ ?) — o (mQE) : (4.3.10)
respectively. The remaining CSN scheme coefficient functions can be computed
via the relations in Eqs. (4.2.17)-(4.2.20), which are defined in terms of the
known H’s and A’s. The light partonic parts of the CNS structure functions
up to second order are given by

nf
FENHET (A, Q7 = Y e [fmwmf + L ut)ei

k=1

Ns, (1), @
as(ng+ L) {fﬁf,?(nf 107 SO+ N0y 1,07

s5.(1), @7 NS, Q*
®Ci,g(1)(p)} +ag(ng +1,1%) {f;%fk(nf +14%)® (Ci,q “ (s, F)
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2 2 nf 2
O ) )+ By s 1 0 € )
(1 =1 I

#3000 + 100 ()] (1)

with

CZS?gTNs (Aagz,gz)—LzS?gTNS 2)( Qz) (F )( 2 m?)

ANS,(Z) I CNS 1 (1 CNS,(I) Q* 4.3.12
AN (W) + BogIn B (?) (4.3.12)

FEXACT

For the BMSN scheme we need the expression for F; as defined above

Eq. (4.2.39)

QQ
FZ-]?QXACT('I”LJ(,A, QQ,mQ) = 622 lGS(nf7ﬂ2)f;7NLo( ) ® H (m )

QQ QQ
Feslng.p {ka+k (ng, ) @ Hy, (m2’ﬂ2)
2 2
S,LO 2 2 Q" Q
1770y n) © H (m2’u2)}]
2 2y N2 2 41O 2 HARD NS ( Q*
tai(ng, 1) Y ek filk(ng i) @ Ly (A, 5. (4.3.13)
k=1

If we choose the maximum A = s (defined in the figure caption for Fig. 4.5),

we get LHARD N3() — 0. On the other hand if the minimum value is adopted

ie. A = 4m? one gets L?qARD NS(2) = L?qu( ) and FZ-%(ACT becomes equal
to the conventional expression given in Eq. (5.2.6). The structure function
FASYMP is obtained from the expression above by replacing the exact coefficient
functlons by their asymptotic analogues. Furthermore to calculate FZ]?MSN

Eq. (4.2.39) we need

FIPF(ng +1,A,Q%m?) = ¢ [fQNi%go(nf‘Flﬂ)CNS()

NS, Q2
ta(ng+1,4°) {fSi%(nf +1,45)2C “)(p)
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N 2
20+ 100 0 0 D

’ Q2
+a2(ns + 1, 42 {féﬁQ(nf +1,4%)® (Cff Bng +1, o7

—I-CNF,)S ( )) ‘|‘E Lr(ng + 17”2)) ®C~izs7(2)(Q_22)

SO 4 1) @ éi’ﬁ(%)}]

nf 2
HARD,ASYMP NS, (2 Q
+ag(ng + 1,u2);ezf;f,;(nf,ﬂ2) ® L ®(a,%).

(4.3.14)

Finally up to order o?, Eq. (4.2.41) becomes

nf
FPSSHO 4 1,8,Q%) = 32 | RO s + 1y
k=1

NS, Q?
tay(ng+1,4°) {f}jb?(nf +1,u5)@ch “)(p) + Ny 41,42

2

Q* NS, Q
)b 4 a2(ng 4+ 1,02) 3 e (ng + 1,43 @ Chy <2><nf+1,?>

55,(1)
®Ci,g (F

nf N Q2
+Y Oy +1,4%) @ Ci’f’(”(p

=1

)+ s+ 1,07 @ 5552)(3—;)}]

’I’Lf 2
SOFT,NS,( Q
+adng + 1,7 Y eI g i) © [qu YA )
k=1

2,9 m? 2,9

_ [ ASYMP NS ( (QQ) n (F( Q2 m?) — FASYMP,(z)(Q:)’mz))cNS,(O)l ‘

(4.3.15)



Notice that we have the relations

Q? Q? Q?

NS, (2 NS, (2 NS, (2 .
Ciyg ng+1, —)=Ci, @ (ny, — )+ Ci,qé )(—2), (4.3.16)
m m m
with
CNS’(2) Q_ _ LASYMP7N57(2) Q_2 FASYMP,(2)( 92 .2
NS,(2) p? NS,(0) 1 NS (1) Q*
~A0d” () €7+ Bo n(5)C V). (4.3.17)
The first and second terms in the expression above cancel the third last and
final term in Eq. (4.3.15). The result is then equal to CSSST’NS’(Q) in Eq.

(4.3.11) in the limit Q* > m?. The form of the above structure functions also
suppresses higher order terms beyond o? arising from the three flavor number
parton densities since the latter also contain terms proportional to a, and
higher. This becomes apparent if one takes the Nth moments of the densities.
For instance we observe the following behavior up to NNLO in the non-singlet
case

(0)
2\ Yaq /2P0
LO,(N)(,,2) ., as(p?) LO,(N) (2
oy~ |2 o,
NLO,(N as(p?) il 20 NLO,(N
f i )(HZ) ~ [1 —I—QS(NQ)A((JI)] [a (/ﬂ)] f i )(Mg)7
S\M0

o (NZ) szg)/wo
LN (2~ [1+as(ﬂ2)A§1)+a3(ﬂ2)A§2)]l . ]

x fNNEO( (2. (4.3.18)

The choice of the multiplication rules above avoids the appearance of scheme
dependent terms beyond the order in which we want to compute the structure
functions. The above prescription guarantees that for Q* < m? we satisfy the
condition Fj, = FXA%T(n) in both schemes.

In the subsequent part of this section we will only discuss the case where
the heavy quark is the charm quark, i.e. ) = ¢. Hence in all expressions
above we have to choose ny = 3. Further we have to make a choice for the

cut off A appearing in the coefficient functions LiSFT’NS’(Q) (k=2,L). The

§ = (A — 4m?*)/(s — 4m?) dependence of 2 L3OFTNS () ig shown in Fig. 4.8,

2,9
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where one notes that it peaks at large x, i.e., near threshold. (The plot for

xLif)qFT’NS’(z) has a similar shape). After convoluting this function with the

parton densities its contribution to the structure function FI'SHT only amounts
to a few percent at Q? = 10° (GeV/c)*. At decreasing ()* the contribution
becomes even smaller. The same holds for LE?RD contributing to F; .. Hence
the dependence of the structure functions on the value of A will be very small.
Therefore in the subsequent analysis we choose A = 10 GeVZ%. Other choices
hardly affect the plots so that our conclusions will be unaltered.

Next we present the xz-dependence of the NNLO charm density (see Eq.
(4.3.7)) for various values of y? in Figs. 4.9a,b. The latter plot emphasizes the
region 0.01 < z < 1. At g = m it becomes negative for x < 0.007 which is due
to the boundary condition in Eq. (4.2.23) and the momentum sum rule. When
p > m the density becomes positive over the whole x range. In Figs. 4.9¢ and
4.9d we have shown the charm densities in NLO which are obtained from [18]
and [19] respectively, with an offset scale so that they can easily be compared
with Fig. 4.9a. The former is constructed in the TR scheme whereas the latter
follows the prescription of ACOT. Both are positive over the whole x range.
Our LO and NLO parameterizations, which are not shown in the figures, are
also positive for all values of x. This property can be traced back to the
boundary conditions which yield in LO and NLO ¢(z,m?) = 0. Note that
a direct comparison between the charm densities from different groups is not
meaningful because each group fits different data to determine their respective
input three flavor number gluon densities. However it seems that our charm
density, at small 2, does not rise as steeply as that of the CTEQ5HQ [19] at
small z. It is more similar to the MRST98 (central gluon) [18] density. In Fig.
4.10 we make a comparison between our charm density which evolves according
to the renormalization group equation and the one computed in fixed order
perturbation theory (FOPT) via Eq. (4.2.23). To that order we have plotted

CEVOLVED($7ﬂ2)

CFOPT($7ﬂ2)

R(z,u?) = (4.3.19)

The density ¢"°FT is computed up to order a? since the OME’s in Eq. (4.2.26)
are only known up to that order. In Fig. 4.10a we have shown the ratio in LO.
The latter implies that we have only kept the leading logarithms in In p?/m?
in the OME’s which are resummed in all orders in ¢®VOWED  The deviation of
R from unity shows the effect of the resummation. The same ratio is shown
in NLO in Fig. 4.10b where we also included the subleading terms in the
OME?’s. Finally if we take into account the non-logarithmic terms in the two-

loop OME’s A%’;Q) and Agi’@) (4.2.26) one obtains the NNLO ratio (see Fig.
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4.10c). The figures reveal that in LO and NLO the effect of the resummation
is very small except near x = 1. This picture changes if we go to NNLO
where the deviation of R from one becomes appreciable when z tends to zero.
Here R can even become negative which happens for p* ~ 3 (GeV/c)?. This
effect is wholly due to the boundary condition ¢(x,m?) # 0 which occurs
beyond NLO. Furthermore the figures reveal that B > 1 at large * whereas
R < 1 at small z. Notice that in Fig. 4.10c "1 (z, y?) = 0 for = = 0.007 at
p? =2 (GeV/c)? so that R = oo which explains the bump in the figure. Figure
4.10c is important because it shows that ¢=VOWVED (3 2) < (FOPT (3 42) at
small z. The consequence is that FZ-]?CMSN(x, @*) and FZ-?CSN(x, @*) will become
smaller than FLCXACT(:I:, (%) when Q? becomes slightly larger than m?* due to
the choice made for the factorization scale in Eq. (4.2.35). This can even lead
to a negative structure function as will happen for FEEN which we will see
later on.

Now we present results for the various structure functions. In Fig.4.11 we
show the charm quark structure functions in NNLO given by FQ(?CSN(nf = 1),
FPMN(ng = 4), FyPY(ny = 4) and FyXA%(ny = 3) plotted in the region
1 < @Q* < 10° (GeV/c)? for x = 0.05. The figure reveals that there is
hardly any difference between the BMSN and CSN prescriptions. The curves
in both prescriptions lie between the ones representing F;?F(nf = 4) and
Fg?ACT(nf = 3) except for low Q?. In this region the latter is a little bit
larger than the other ones which is expected from the discussion of the charm
density given above. Notice that in the low Q? region F;?F(nf = 4) be-
comes negative which means that charm quark electroproduction cannot be
described by this quantity anymore. In Fig. 4.12 we present the same plots
for x = 0.005. Again one cannot distinguish between FQE?iVISN(nf = 4) and
Fy%N(nyg = 4) but now both are smaller than F?XAT(ny = 3) over the whole
()? range. The latter is even larger than F;PF(nf = 4) in particular for
Q* > 50 (GeV/c)?. Further we want to emphasize that due to our careful
treatment of the threshold region there is an excellent cancellation (to three sig-
nificant places) between F}PF(ny = 4) and and F32YMP(ny = 3) at very small
Q? so that both Fy5N(n; = 4) and FPY5N(ny = 4) tend to F}24%T (ny = 3).
Also at large )? we have an excellent cancellation between FifCSYMP(nf =3)
and FngCT(nf = 3) so that both FQ(?CSN(nf =4) and FQ]?iVISN(nf = 4) tend to
F;)?F(nf =4) (see Eq. (4.2.44)).

In Fig. 4.13 we show similar plots as in Fig. 4.11 but now for the
charm quark longitudinal structure functions. Here we observe a difference
between the plots for Ff2N(ny = 4) and FPMN(ny = 4) in the region m? <
Q* < 40 (GeV/c)®. In particular the latter tends to FFXAT(ny = 3) while

the former is larger. Furthermore FEE)F(nf = 3) is considerably larger than
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the other three structure functions, which differs from the behavior seen in
Fig. 4.11. This can be mainly attributed to the gluon density which plays
a more prominant role in F7 . than in F,.. For @ = 0.005 (see Fig. 4.14)
the difference between the BMSN and the CSN descriptions becomes even
more conspicuous. In this case FISEN(nf = 4) becomes negative in the region
m? < Q* < 7 (GeV/c)* which is unphysical. This effect can be attributed to
the zeroth order longitudinal coefficient function in Eq. (4.3.9), which behaves
like CESQN’NS’(O) = 4m?*/Q)? (see [16]), and the non-vanishing charm density at
©? = m?. In the case of BMSN the longitudinal coefficient function is equal to

zero in lowest order so that FBE/ISN(nf = 4) does not become negative.

In Figs. 4.15 and 4.16 we make a comparison between the NLO and
the NNLO structure functions FQ(?CSN(nf = 4) and Fz]?iv[SN(nf = 4). Both
prescriptions i.e. CSN and BMSN lead to the same result in NNLO. However
while going from NLO to NNLO the the structure function FF2N(ny = 4)
decreases whereas FQE%\/ISN(nf = 4) increases a little bit. The differences in
the case of x = 0.005 are even smaller than those observed for z = 0.05.
The same comparison between NLO and NNLO is made for the longitudinal
structure functions in Figs. 4.17 and 4.18. Here the differences between NLO
and NNLO are much larger than in the case of F; . in Figs. 4.15, 4.16. In
NLO FE%/ISN(nf = 4) is smaller than the one plotted for NNLO. However for
FEEN(nf = 4) we see a decrease in the small )*-region while going from NLO
to NNLO whereas for large Q* we observe the opposite. In particular the valley
in the region m? < Q* < 7(GeV /c)? observed for F'3N(ny = 4) at = 0.005 in
NNLO turns into a bump. This is due the boundary condition on the charm
density which in NLO vanishes at g = m. whereas in NNLO it is negative
at small z-values (see Fig. 4.10c). From the observations above one can
conclude that the CSN prescription bedevils the threshold (low *) behavior
for F, . due to the non-vanishing zeroth order longitudinal coefficient function
CESQN’NS’(O). This problem is avoided by TR in [10] by imposing a condition
on the structure functions as indicated in Eq. (4.2.36). Hence our results
for FZ»]?CMSN agree reasonably well for : = 2 and ¢ = L with those presented
in NLO by TR in [10]. This is mainly due to the fact that there is only a
small difference between the NLO and NNLO approximations in the BMSN
scheme. It also reveals that the condition in Eq. (4.2.36) for ¢« = L can be
mimicked by a vanishing zeroth order longitudinal coefficient function. Note
that results for the x-values presented above are representative for the whole
range 5 x 107° < x < 0.5.

To summarize the main points of this paper we have discussed two vari-
able flavor number schemes for charm quark electroproduction in NNLO. They
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are distinguished by the way mass factorization is implemented. In the CSN
scheme this is done with respect to the full heavy and light quark structure
functions at finite Q*. In the BMSN scheme the mass factorization is only
applied to the coefficient functions in the large ? limit. Both schemes re-
quire three flavor and four flavor number parton densities which satisfty NNLO
matching conditions at a scale u? = m?*. We have constructed these densities
using our own evolution code. The schemes also require matching conditions
on the coefficient functions which are implemented in this paper. We have
also made a careful analysis of the removal of dangerous terms in In(Q?*/m?)
from the Compton contributions so that both Fi?CSN(nf +1) and FZ-]?CMSN(nf +1)
are collinearly safe. We have done this in a way which is simplest from the
theoretical point of view, by implementing a cut A on the mass of the ¢ — ¢
pair which has to be determined by experiment. This cut is not required in the
fixed order perturbation theory approach given by FLCXACT in [5] for moderate
(Q*-values.

Finally we made a careful analysis of the threshold behaviors of Fi?CSN(nf +
1) and FZ-]?CMSN(nf + 1). In order to achieve the required cancellations near
threshold so that they both become equal to Fi?CXACT(nf) one must be very
careful to combine terms with the same order in the expansion in the run-
ning coupling constant a;. Therefore technically we require six sets of parton
densities, namely the LO, NLO and NNLO three flavor number sets and the
LO, NLO and NNLO four flavor number sets. However not all the necessary
theoretical inputs are available to us to finish this task. The approximations
we made in this paper were sufficient to provide very clear answers. We suc-
cessfully implemented the required cancellations near threshold and the corre-
sponding limits at large scales came out naturally. Inconsistent sets of parton
densities automatically spoil these cancelations. We did not have to use match-
ing conditions on derivatives of structure functions as proposed in [10], which
seem very artificial. The numerical results do however end up quite similar.
We have also shown that the CSN scheme defined above leads to an unnatural
behavior of the longitudinal structure function in the threshold region which
is due to a non-vanishing zeroth order coefficient function. Since there are
no other differences between the CSN and BMSN schemes we recommend the
latter because it is less complicated than the former. In particular it does not
need additional coefficient functions other than the existing heavy quark and
light parton coefficient functions available in the literature.

ACKNOWLEDGMENTS

The work of A. Chuvakin and J. Smith was partially supported by the Na-
tional Science Foundation grant PHY-9722101. The work of W.L. van Neerven
was supported by the EC network ‘QCD and Particle Structure’ under contract

107



108

No. FMRX-CT98-0194.



4.4 Appendix A

In this appendix we present the exact expressions for the heavy quark
coefficient functions Lﬁ?q) corresponding to the Compton process in Fig. 4.5
when there is a cut A on the invariant mass spg of the heavy quark pair.
As explained in [15] the calculation is straightforward because one can first
integrate over the heavy quark momenta in the final state without affecting
the momentum of the remaining light quark. The phase space integrals are
the same as the ones obtained for the process v(q) + g(k1) — ¢+ q (¢* —
Q + Q) where the gluon becomes virtual. In the expressions for the complete
integration over the virtual mass sgq of the gluon (see Fig. 4.5) one integrates
over the range 4m* < sgg < s with s = (¢ + k). The resulting expressions,
called L;’f) with r = NS,S and ¢ = 2, L are presented in appendix A of
[15]. Notice that up to order a? there is no difference between singlet and
(2) _ 5@

i

non-singlet so that L?Iqs If we limit the range of integration to

Am? < 500 < A one obtains

2

Li?qFTNS’(Q)(Z;Aa %) = CpTy {96@2(3)2(1 — 2)2[L1(L2 + Ly + Ls)
—2(DILy — DILy — DILs + DILy)| — 32a%(s)[1 + 3(1 — 2)

—6(1 — 2)*]Ly + 13—62[1 — 26a(s)(1 — 2) + 88a%(s)(1 — 2)?] %
—?b(A)a(s)z(l —z)(1 —d(A))Ls + %b(A)a(s) [2 +10(1 — 2)

—14(1 = 2)? = d(A)(2 - (1 = 2) = 3(1 — 2)?)]
—128b(A)d(A)a*(s)z(1 — 2)*(1 4 2d(A)) Le

+%b(A)d(A)a2(s)(1 +2d(A)) [1+3(1 — 2) — 6(1 — 2)?]

—33—26(A)z+ %bS(A)z} , (4.1.1)

2 41+ 2
ngFT,NS@)(Z’A,%):CFTf{( Tz —16a*(s)(1 — z)[1

31—z
—9(1 = 2) + 9(1 — 2)*]) [L1(La + La + Ls) — 2(DI Ly — DIL,
8 4
—DILs+ DILy)| — (g — o+ 8 (s)[2 4 18(1 — 2)
— Z

1 8 19
‘ 2 ¢
—36(1 — 2)® + :])Ll + (5[28 —17(1 = 2) —

]

— Z
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16

+gals)[61 = 160(1 - 2) + 128(1 — 2)’]

_% 2(s)(1—2)[23 = 104(1 — z) + 94(1 — z) ]) ii

+6346(A) ()[[2 =700 = 2) +6(1 — 22| (1 — d(A))

+d(A)a(s)(1 —2)[1 =9(1 — 2) + 9(1 — 2)?](1 + 2d(A))] L

_|_§b(A) (6-8())[2 -1 —2) i “|Lo

‘?b(A)d(Am(s)[? —3(1=2) =901 —2)" — 5 iz]

B yals) 2 - 9501 — 2) 12101 2+ ]

* 1365(A)d(A)a2(8) (1+2d(2)) 2 +18(1 = 2)

—36(1 — 2)% + ] i z] — gb(A) [50 —34(1—-2) - 2_92]
+%63(A)[38—28(1 —z) - 11_72]} (4.1.2)

where the partonic scaling variable is equal to z = Q?/(2¢ - k1) = Q*/(s + Q?),
Further we have defined

o8 ~f i

a(‘s):?:(l—z)f : V1_4T , d(8) = 4m2
h:meé%%),@:mqua, L=t (22
L=w(5E) L nmn(5TE) L en (),
DILy = Liy( 1+55qq22 (11:“;(@))))) . DIL, = Lig(%) ,
DILy = L12( = ) . DILy= LiQ(%biqu) . (4.1.3)

The variable A, which allows us to distinguish between soft and hard (observ-
able) heavy quark anti-quark pairs, is in the range 4m? < A < s. The variable
z is in the range 0 < z < £/(€ + 4).
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Note that when A = s one obtains LiOFTr( )

in [15]. When the integration range is given by A < 555 < s we get L,
which are given by

— L;’SQ) which are reported
HARD ,(2)

2 2 2
LHARD,NS,(Z)(Z’A7Q_) _ LNS’(2)(2,Q—) _ LSOFT*NS’((")(Z,A,Q—). (4.1.4)

i,q m2 1,9 m2 1,9

HARD NS,(2) -

Notice that L is finite in the limit m — 0 so that it does not contain
SOFT,NS,(2)

collinear dlvergences The latter can be wholly attributed to L; as 1s
revealed if one takes the limit ) — oco. In this case the expressmns (A.1) and
(A.2) reduce to

Li(;FT ASYHPNS( )(27A7 Qz) OFTf [2—621n 7?1—2 B 13_621 (%2 B Z)
-I-%Zln 1%6(& — %z — %(b(A) — 1)z + 19—66(A)(62(A) — 1)2
64 A , A Q? 1—2
+MA%(§§y-—mQ Vi [(& - 2) ]
16 A , 2 8A2 L, 1 3
3@2(1_2—4—|—32)—|—§@2 ((1_2)2+1_Z—6)H(4.1.5)

and

SOFT,ASYMP,NS,(2)
LQ q (

2 2 2 —
g <o () EnLn (5

81n—2—|-?1 (12_2) §ln%2—g)ln<7l+b(A))

3
, Q% 8. Q? 1—2z 8 . /Az(14+b6(A
glA—?ﬁﬂﬂ ) — Sp, (2L HAD)

2 2
m — — In=— —2In =

2 3 <A(1+b(A))) 9 m? A

—|—41n(Q_2—z)_@ln(l_z)—l—%}—l—(g—l—?z)lnm—Q




2A? L, 2 18 1 ,
+3@z((1_2)2+1_Z—36+m)}+(§b(m(1—b(A))

= Q (1-—
+5 ((A) = D) (1+ 2 ) ((K ) - ))
+%5(A)(52(A)—1) (10+282— 72)+ _1)(_%

04 628 1
_?ZJFW“Z)] (4.1.6)

respectively. In the limit m — 0 the results above show the same logarithmic
terms in In*(Q?/m?) (¢ = 1,2) as the asymptotic expressions for Lff given in
Egs. (D.7) and (D.8) of [15]. Hence the differences between the results there

and the asymptotic expressions above are free of any terms in In(Q?/m?). The

HARDr( )

asymptotic expressions of L; for Q* — oo are given by

2 2
HARD,ASYMPNS,(2),  » &7\ 6  1-z Q
LLq (Z7A7ﬁ) —CFTf [?Zlnz—2+?21n <K—Z)
32 14bA) 16 40 80 16 0

—en L 2 U (B(A) — 1)z 4 —b(A
g+ o = o+ (0(A) = D)z 4 (A

_bQ(A))z—b(A){(%%z —162 *) In ((%2—2)(12_22))
16 A , 2 2 ) o SA 5 1 3
sl ) g <<1—z>2+1—2_6)H |

(4.1.7)

and

2

HARD,ASYMP,(2), A @\ L4+2% (4.,
LQ,Q (Z7A7W)—CFT]’ l(l_z) gln (1—2)

—21n<1z_22)—13—61n21n(1—z)—|—61nz—|—2+§ln2i2
8 QY ,1-— 16 8. Q2 16, /1— 8. (2
+§an1n( Z)—I—(T—glnﬁ—?ln( Z) _ )
1+ b(A 8 . /Az(1+b(A 8 . /1+b(A 8
(LA _LIQ(%) (LEUD)y !

8. 8. . 2m? R Q?
—§L12(1—2’)—§L12(m)—I—Zln——4ln(——z)}

2 2420 Q? 4 52 1+ b(A
R e e I S R ) n (L1012))
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+(§+—z)ln(1—2)—(2—|—%z)lnz—|—§_%Z+6(A){[16%2

(2o —1—62) = 2o (e ) [(% - )L

SA T 1 2 A2
Yot S =) “30%

—36 + ﬁ)} + (gb(A)(bQ(A) -+ %(1 —0))(1+2 -1 iz)

3 42( - ;T
Q (1—2) 1—=z

(LU Loy - a0+ 282 - )
344 704 628 1 )]

+H1=bA) (-5 - 52+

A (4.1.8)

respectively. As has been mentioned below Eq. (4.4) the expressions above
are finite in the limit m — 0 (b — 1) so that they do not contain collinear
divergences.
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Chapter 5

Bottom quark electroproduction in variable
flavor number schemes



5.1 Introduction

The H1 and ZEUS experiments at HERA now have enough integrated
luminosity to study bottom quark deep inelastic electroproduction. Therefore
it is an appropriate time to present up-to-date predictions for the bottom
quark components of the deep inelastic structure functions Fj(x, Q*) where
t = 2, L. We assume that the bottom quark is produced in an extrinsic fashion
and that the neutral current reaction dominates over the charged current one.
This means that in fixed order perturbative QCD the heavy quark structure
functions F;(z, Q?* m}), i = 2, L are given by the virtual-photon gluon-fusion
processes and their higher order corrections with only light partons in the
initial state. Notice that in the case of bottom quark production the light
partons are represented by the gluon and the four light flavors u, d, s, c
together with their anti-particles.

In the literature one has adopted two different treatments of extrinsic
bottom quark production, which are known as the massive and massless de-
scriptions. The former treats the bottom quark as a heavy quark (with mass
my) and the partonic cross sections (or heavy quark coefficient functions) are
described by fixed order perturbation theory (FOPT) as mentioned above.
Notice that due to the work in [1] the perturbation series is now known up
to second order. The latter treatment, which has been rather popular among
groups which fit parton densities to experimental data, treats the bottom quark
as a massless quark so that it can be represented by a scale dependent parton
density fy(z, p?). Although at first sight these approaches are completely dif-
ferent they are actually intimately related. It was shown in [2] that the large
logarithms of the type In(Q*/m}), which appear in FOPT when Q? >> mi,
can be resummed in all orders. The upshot of this procedure is that the bot-
tom components of the deep inelastic structure functions F;y(z, Q* mj), where
¢ = 2, L, which in the FOPT approach are written as convolutions of heavy
quark coefficient functions with four-flavor light-mass (u,d,s,c) parton densi-
ties, become, after resummation, convolutions of light-mass parton coefficient
functions with five-flavor light-mass parton densities which also include a bot-
tom quark density. This procedure leads to the so-called zero mass variable
flavor number scheme (ZM-VFNS) for F;(z,Q*) where the mass of the bot-
tom quark is absorbed into the new five flavor densities. To implement this
scheme one has to be careful to use quantities which are collinearly finite in
the limit mpy — 0. From the above considerations it is clear that the FOPT
approach is better when the bottom quark pair is produced near threshold
(where Q*(z~* — 1) > 4m}) because terms in m; are important in this kine-
matic region. On the other hand far above threshold, where also Q% > m?, the
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large logarithms mentioned above dominate the structure functions so that the
ZM-VFNS approach should be more appropriate. Both approaches are char-
acterized by the number of active flavors involved in the description of the
parton densities which are given by four and five respectively. Each scheme
has different densities but the momentum sum rule either gets contributions
from four-flavor densities or five-flavor densities and is always satisfied.

As most of the experimental data will be in the kinematical regime which
is between the threshold and the large )* region, a third approach, called the
variable flavour number scheme (VFNS), has been introduced to describe the
heavy quark components F; ,(z, Q?) of the deep inelastic structure functions.
Actually there are several such schemes. They include the Aivasis, Collins,
Olness, Tung (ACOT) [3], scheme, the Buza, Matiounine, Smith, van Neer-
ven (BMSN) [2], [4] scheme, the Thorne, Roberts (TR) [5] scheme and the
Chuvakin, Smith, van Neerven (CSN) [6] scheme. A discussion of them is
given in the last reference. The difference between the schemes can be at-
tributed to two ingredients entering in their construction. The first one is the
mass factorization procedure carried out before the large logarithms can be
resummed. The second one is the matching condition imposed on the heavy
quark density, which has to vanish in the threshold region of the production
process. Another aspect of these approaches is that one needs two sets of
parton densities. For bottom quark production one set only contains densities
in a four-flavor number scheme whereas the second one, which also includes a
bottom quark density, is parametrized in a five-flavor number scheme. Both
parameterizations have to satisfy the matching relations quoted in [2]. Up to
next-to-leading order (NLO) they are continuous at the scale g = my;, whereas
in next-to-next-to leading order (NNLO) the parton densities become dis-
continuous while going from a four to a five flavor scheme. Starting from a
three-flavor set of parton densities given in [7] we have recently constructed
in [8] a four-flavor set of densities which satisfied the matching relations in
[2] at the scale g = m.. Then we evolved these densities with LO or NLO
splitting functions up to the scale p = m; and constructed a five-flavor set
which also satisfied the matching relations in [2]. This set was further evolved
with LO and NLO splitting functions up to high scales. Notice that since the
NNLO splitting functions are unknown the only difference between the NLO
and NNLO parton densities can be attributed to the boundary conditions at
@ = m. and g = m;, where the latter densities become discontinuous contrary
to the LO and NLO ones. We can now use these densities to discuss VENS for
bottom quark deep inelastic electroproduction, in particular in the CSN and
BMSN schemes. The previous discussions in [6] were focussed on applications
to charm quark electroproduction.
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Since any description for bottom quarks follows closely that for charm
quarks we refer the interested reader to [6] for most of the details and simply
specialize to bottom quark electroproduction in Sec.Il. We work to second
order in the running coupling constant a,(u*). Numerical results are shown
for the structure functions F5j and Ffp in the CSN and BMSN schemes.
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5.2 Bottom quark structure functions

In this Section we consider bottom quark deep inelastic electroproduction
in two variable flavor number schemes, namely the BMSN scheme as proposed
in [2], [4] and in the CSN scheme as proposed in [6]. For that purpose we have
constructed in [8] a five-flavor parton density set from a four-flavor parton
density set. Using our densities we will study the differences between the
bottom components of the deep inelastic structure functions FCSN(nf +1) and
FBMSN(nf + 1), where the number of light flavors is ny = 4.

To keep the discussion short we simply refer the reader to Sec.I11 of [6] for
a discussion of the MS parton densities, the exact solution for the running cou-
pling constant and the scale choice. All references to three-flavour (four-flavor)
densities should be replaced by four-flavor (five-flavor) densities respectively.
All our calculations of next-to-leading (NLO) and next-to-next-leading or-
der (NNLO) quantities use 1\2/7[2576 = 299.4,246,167.7,67.8 MeV, which yields
as(5, M%) = 0.114. The structure functions are defined in Eqs.(3.9)-(3.17) of
6], where now n; = 4 and m, is replaced by m; = 4.5 GeV/c?. To make this
paper reasonably self-contained we now reproduce the final formulae we use
for the structure functions. For : = 2, L, the CSN scheme uses

2
<

m

FON(ng +1,A,Q% m?) = lfgfg"(nf + 1, 13)Cey O

2
+as(ng +1,47) {fé&%(m + 1) @Cp 1)(Q— Q—)

Y
m?’ 2

S.NLO 2 csns (1) (@7 Q7
+HIENO (g + 1, p?) @ €y (2, )

m?’ p?
(g + 1,u2){f5‘i@<nf 1t © (C?,LS’(” (ns 41, 5.5

2 2 2 2
e (L@ )) +Z [E9(ny + 1, ) 0 NP (L L)

’
m2

Y
m2’ 2

FFO(ny 41, 4 @ N 2)(QQ QQ)H

nf 2
HARD,NS, Q ¢
ta(ng + 1,04 € L% (ns + 1,43 @ L DA, =) (521

k=1 m
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where we choose the heavy quark () to be the bottom quark, so that the number
of light flavors is ny = 4. The charge of the bottom quark is eg = —1/3 and
its mass is m = my. The coefficient function LHARD depends on a parameter
A which refers to the invariant mass of the Q ()-pair. For bottom quark
production we choose A = 100 (GeV/c)?. The coefficient functions labelled
by C“N depend on the heavy quark mass but are finite in the limit m — 0.
They are defined in Eqs.(2.8)-(2.20) in [6]. To simplify the notation we will
refer to the above structure functions as FCSN(nf = 5), indicating that they
depend on five-flavor parton densities.

The same parameters eg, my, A etc., also show up in the expressions for
the bottom quark structure functions in the BMSN scheme. Here we have the
representations

FEYSN (g 4+ 1,0, Q% m?) = FEAT (g, A, Q2 mi?)

—Fg M (0, A, Q1 mP) + G (ny + 1L,A,QNm?) . (5.2.2)
The pieces in this formulae represent first the results in FOPT, given by

s,/ Q7
FEXACT(nfjA Q% m?) = 622 las(nf7ﬂ2)f;,NLO(nf7M2) ® Hi,g( )(ﬁ)

o @
ettt | 2 Ains) 0 110 (4. D)

+170(ny, 0 @ HSQ(Q)(Q—; Q—Q) H

m?’ p?

nf Q2
tal(ng, 1?) Y e fige(ng, p?) @ Ly WOV (A ) (5.2.3)

k=1 m

The next pieces are the structure functions FASYMP(nf) which can be obtained

from FEXACT(n ) by replacing all exact heavy quark coefficient functions H;
and L, (k= ¢,g) by their asymptotic analogues which are defined by

HE™M = lim Hy , L™ = lim L. (5.2.4)
Q2>m? Q2>m?
Finally the structure functions Fif)gF(nf + 1) which are very often called the

ZM-VFNS representations are defined by

FFR (ng + 1,0, Q% m?) = eb | F336° (ng + 1, u2)Cy

122



QQ

NS
+ay(ny + 1,u2>{f5i8<nf+ L) e, ”(W

2
SNLO 55,(1), @
+al(ns + 1, p2) {fé;‘iQ(nf +1,4%)® (Ciﬁf’“)(nf +1,%)

R 2 nf . 2
HEO(L) ) 4 3 80+ 1) 0 €5 (L)

. 2
+3(0 + 10 8

nf 2
HARD,ASYMP NS, ( Q
tai(ng +1,0%) 3 eifipr(ng, 1*) @ Li (a5

k=1

(5.2.5)

In all these results the heavy quark Q refers to the bottom quark and the
other parameters are defined above. For simplicity we will refer to these struc-
ture functions as Ff*A(ny = 4), FP™MP(ny = 4), and F}°"(ny = 5)
respectively, which indicates that the first two structure functions depend on
four-flavor densities and the last one depends on five-flavor densities. The par-
ton densities fi in the above formulae are represented in leading order (LO),
next-to-leading order (NLO) and next-to-next-to-leading order (NNLO). The
NNLO case refers to the boundary conditions imposed in [6] since the three-
loop splitting functions are not known yet. These parton densities have been
constructed in [8] starting from a three-flavor parametrization in [7]. The mul-
tiplication of the densities with the heavy and light parton coefficient functions
is done in such a way that the perturbation series is strictly truncated at order
a?. This is necessary to avoid scheme dependent terms which would otherwise

arise beyond order o?. Therefore the following requirement is satisfied
FSSN(nf =5) = FZ-]?MSN(nf =5) = FEXACT(nf =4) for Q*<m?.(5.2.6)

Since fo(m?*)NNEO £ ( (see [2]) this condition can be only satisfied when we
truncate the perturbation series at the same order. Furthermore because of
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Eq. (5.2.4) and the property

2 2 2
lim cCSN0 1 Q" Q7 —c¥ 1 @ 5.2.7
G st L ) = Gl + L), (62)

we have the asymptotic relation

: BMSN , T CSN )
Q};lQ F o7 (g + LA, Q*m?) = QQh;HQ Fo™(ng + LA, Q% m?)
m m

= FZP,)CIQDF(nf + 17A7Q27m2)- (528)

At first sight the form of the expression for FZ%VISN in Eq. (5.2.2) looks quite
different from the one presented for Fl-gN in Eq. (5.2.1). However this is not
true. Using the mass factorization relations for the asymptotic heavy quark
coefficient functions in [2] one can cast FZ%VISN into the same form as presented
for F Z’,SN where all quark coefficient functions of the type CSSN are replaced
by their light quark analogues C; , appearing in Eq. (5.2.5). This replacement

also applies to the CSSN occurring in the mass factorization relations for CSQSN’S

and CSqSN’PS presented in [6]. Therefore the difference between the CSN and
BMSN schemes can be attributed to the powers (m?/Q?)? showing up in CSSN
but absent in C;,. This effect is only noticeable in the threshold region where
Q?* ~ m? as we will show below.

The heavy quark coefficient functions CSEN, Hip, Liy (k=0Q,q,9) and
the light partonic coefficient functions C; ;. (k = ¢, g) can be traced back to the
following processes

COSNSM gSM L p g 5 Q+Q (6] (CSN), [1] (EXACT),
[11] (ASYMP)

CONSE g g S Q4+ Q+g [6] (CSN), [1] (EXACT),

i\9 69
[11] (ASYMP)
CS(JSN’PS’(Q), qus’@) v +q¢— Q+Q+q Bethe-Heitler reaction

[6] (CSN), [1] (EXACT), [11] (ASYMP)

HARDNS,(2)  _« ~ )
L;, Y +qg— Q4+ Q+qg Compton reaction

[6] (EXACT and ASYMP)

CSSN,NS,(O)yHETS,(O) . 7* 4 Q N Q
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Cio "M HGM 4 Q = Qg [12]

NS, *
Ca T+ g—g
Co s v ta—g+g 13]

@yt g—qtgtg [13]

Cy™ et atq [13

gt Ve atqt+q [13]

Moy g —gtq [13]

CNZ-S;Q) C Y +g—q+q+g [13] (5.2.9)

Behind the reactions we have quoted the references in which the correspond-
ing coefficient functions can be found. Note that the heavy quark coefficient
functions H;j are mass singular when m — 0. This can be observed immedi-
ately when one looks at HA2 Y™ which behaves like In™(p*/m?) In"(Q?*/m?)
(see [11]). After the logarithms are removed one obtains the quantities Cp®
which, even though they depend on m, are finite in the limit m — 0. The

LBARD i finite by itself because as we mentioned above we

coefficient function
have imposed a lower cut off A = 100 (GeV/c)? on the invariant mass of the
() Q-pair. Finally notice that all parton densities, coefficient functions and

the running coupling constant are presented in the MS-scheme.

Now we present results for the various structure functions. We are inter-

ested in the bottom quark structure functions F{°N(ny = 5) and FSMN(ny =

zy

5) for ¢ = 2, L in NNLO for the CSN [6] and BMSN [2] schemes respectively. In
Fig. 5.1 we have plotted the structure functions FSEN(nf = 5), £¥SN(nf =
5), F;?F(nf = 5) and Fgg(ACT(nf = 4) in the region 20 < @* < 10° in
units of (GeV/c)? for x = 0.05. This figure reveals that there is hardly any
difference between the BMSN and CSN prescriptions. The curves in both pre-
scriptions are essentially identical to that for FEZ(ACT(nf = 4). In this region
F;?F(nf = 5) is larger than the other results which is expected from the dis-
cussion of the bottom quark density given in [8]. There is still an appreciable
difference at the highest plotted )? demonstrating that mass effects are impor-
tant up to very large scales. Notice that for (* < 35 (GeV/c)? F;?F(nf =5)

becomes negative which means that bottom quark electroproduction cannot
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be described by this quantity anymore. In Fig. 5.2 we present the same
plots for x = 0.005. Again one cannot distinguish between F%V[SN(nf = 5)
and Fy®N(n; = 5) but now both are smaller than FJ¥4T(n; = 4) over
the whole Q? range. The latter is smaller than F;}?F(nf = 5) in particu-
lar for @Q* > 35 (GeV/c)?®. Further we want to emphasize that due to our
careful treatment of the threshold region there is an excellent cancellation be-
tween F} P (ny = 5) and F3PYMP(ny = 4) so that both Fy7N(ny = 5) and
FPMN(ny = 5) tend to FPAT(ny = 4) at Q* = mj. At large Q* we have
a cancellation between F}PYMP(ny = 4) and FyFA“T(ny = 4) so that both
FQ(beN(nf = 5) and le?é\/[SN(nf = 5) slowly tend to F;EF(nf = 5). They are
only identical at extremely large ()? demonstrating that mass effects are still
important over a wide range in z and QZ.

In Fig. 5.3 we show similar plots as in Fig. 5.1 for the bottom quark
longitudinal structure functions. Here we observe a small difference between
the plots for F3(ny = 5) and FP™N(ny = 5) in the region 20 < Q* <
10® (GeV/c)?. Furthermore F} ¥ (ns = 5) is considerably larger than the other
three structure functions, which differs from the behavior seen in Fig. 5.1. This
can be mainly attributed to the gluon density which plays a more prominant
role in Fp, than in Fy,. For @ = 0.005 (see Fig. 5.4) the small difference
between the BMSN and the CSN descriptions becomes more conspicuous for
low Q2.

In Figs. 5.5 and 5.6 we make a comparison between the NLO and the
NNLO structure functions Fy3N(ny = 5) and FP"N(ny = 5). Both the
CSN and and BMSN descriptions lead to the same results in both NLO and
NNLO. However while going from NLO to NNLO the the structure functions
FypN(ng = 5) and FP}"N(ny = 5) increase a little bit. The differences in
the case of x = 0.005 in Fig. 5.6 are even smaller than those observed for
x = 0.05 in Fig. 5.5. The same comparison between NLO and NNLO results
is made for the longitudinal structure functions in Figs. 5.7 and 5.8. Here the
differences between NLO and NNLO cases are much larger than in the case of
Fyp in Figs.5,6. In NLO both FP}*N(ny = 5) and F{3N(ns = 5) are smaller
than the NNLO results.

Previous results for FMXACT(x, @*,m}) and have been presented in Figs.
5.20a, 5.20b in [1] for a now obsolete set of parton densities, so the values
quoted there are too small. To show these changes we add in Figs. 5.9 and 5.10
plots for the x dependence of FQ(?bSN(nf = 5), FQ}?EI,VISN(nf = 5), F;?F(nf = 5)
and FQE}ACT(nf = 4) at fixed @* = 30 and Q* = 100 in units of (GeV/c)?
respectively. Finally we also show in Figs. 5.11 and 5.12 plots for the = depen-
dence of FLN(ny = 5), FPY™N(ny = 5), FLp¥(ny = 5) and FE3A%T (ny = 4)
at fixed @? = 30 and Q? = 100 in units of (GeV/c)? respectively. Note that
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there are also some recent results for Fy; in [5] in the TR scheme and in [14]

for FOPT.

The plots for FCSN(nf = 5) in Figs. 5.7,5.8 do not show a negative region
at small ? which could have been expected by analogy with the results for
Ff®™N(ny = 4) in [6]. In the case of bottom quark production the negative
regions do occur but at even smaller values of z. In Figs. 5.13, 5.14 we show
the same plots as in Figs. 5.1, 5.3 respectively but for z = 5 x 107°. Now
the structure function FCSN is negative in the region Q* ~ 30 (GeV/c)®. In
Figs. 5.15,5.16 we show the same plots as in Figs. 5.5,5.7 respectively but for
x =5x107%. Fig. 5.16 shows that the longitudinal structure functions for the
case of bottom production also have negative regions at small )* values in both
NLO and NNLO. This phenomenon also occurs for the charm quark structure
functions in [6] In the NLO case this arises because the term f2™O(n; +

)®CgSgN S (Q [m? Q? [ u? ) in Eq. (5.2.1) is negative due to the definition
of the gluon coefficient function in the CSN scheme (see Eq.(2.19)) in [6]) which
is given by

=L L) = (L) - g e (L),

m 9 *m m?2

4 2
with Cpp@ - (5.2.10)

Q"

where Ag’;l) denotes the one-loop operator matrix element computed in [11].
S,(1)

Notice that the latter and the lowest order exact coefficient function Hy ',

are always positive. Because of the minus sign in Eq. (5.2.10) it appears that

the coefficient function CSSN 5 can become negative in particular at low Q*

values. In the NNLO case one obtains more negative contributions due to

the term fYNLO(p, 4 l,ﬂ(‘))cg’SQN’NS’(O) in formula (5.2.1). It turns out that

Q+Q
fg_lﬁgo(nf + 1,x, ?) is negative at small z and p? = Q* > m?* Notice that
at the latter scale fQ+Q(nf + 1,2z, p?) and fQN_I;g(nf + 1,2z, p?*) are very small

because they vanish at p = m in contrast to fQN_ll\_%O (nf+1,z, u?). The behavior

of the structure function above is characteristic of the CSN scheme since it
does not appear in the case of BMSN. This is because in the latter scheme the
longitudinal coefficient function, represented by CCSqN NS:(0) , 1s identical to zero

so that the zeroth order contribution to FBMSN( 7 =5) Vanishes and the first
BMSN,S,(1) _ e ( )

order correction is given by C; | The latter leads to a positive
structure function over the whole kmematlcal region. To further demonstrate
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this point we plot in Fig. 5.17 pieces of the NLO result

2
FEN(ng +1,Q% m?) = ¢ [fﬂ?(nf LN

2 2
Fau(ng +1,p?) {ﬁﬁ(m 1) efpase (4 9

Y
m?’ 2

2 )2

#0410 o (L D)) (52.11)
The sum of the b-quark contributions, labelled Term1, is always positive. The
gluonic contribution, labelled Term2, is clearly negative over a wide range in
()? and large enough that the sum FE%N is also negative for 30 < Q* < 150
GeV?, as in Fig. 5.16. This behavior is due to the gluonic coefficient function
CgEN’S’(l) which is explained below Eq. (5.2.10). However the magnitude of
the gluonic contribution depends on the choice of the gluon density. If we use
an NLO gluon density in the order «; contribution to the structure function
in Eq. (5.2.11) rather than a LO gluon density then the sum of the first two
terms is unchanged but the gluonic part is now smaller in magnitude. These
contributions are shown in Fig.5.18 where now |Term2| < Terml so that the
total result for F]S’%N is everywhere positive. However this procedure violates
our prescription for the computation of the structure functions in both the
CSN and the BMSN schemes. In this prescription the LO densities are multi-
plied by the highest order coefficient function whereas the NLO densities are
combined with lower order coefficient functions (see formulae (5.2.1), (5.2.3)
and (5.2.5)). In this way the perturbation series is truncated up to the order
we want to compute the structure functions. Hence we avoid terms, arising
beyond that order, which introduce a scheme dependence and spoils the thresh-
old behavior (see [6]). The latter happens if one follows the usual procedure
where one multiplies the highest order densities by the highest order coefficient
functions. The difference between the usual procedure and our prescription is
not only shown by our parton density set but is also observed for other sets
presented in the literature. Examples are recent sets such as MRST98 [9] (with
my = 4.3 GeV, m. = 1.35 GeV), MRST99 [15] (with m; = 4.3 GeV, m. = 1.43
GeV), and CTEQS5 [10] (with mp = 4.5 GeV, m, = 1.3 GeV). Note that the
MRST99 set does not provide LO densities. Using their NLO densities they
yield positive values for the Q? dependence of FE%N at x = 5 x 107°. There
are both LO (CTEQ5L) and NLO (CTEQ5M) densities in the CTEQ5 set and
we have checked that, for the same z, )? values FE%N is positive with purely
NLO densities but has a negative region when the LO and NLO densities are
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used according to our prescription. The observations made above leads to the
conclusion that the 4m?/Q?* term in the non-singlet CSN longitudinal coeffi-
cient function in Eq. (5.2.10) leads to a negative gluonic coefficient function.
When the latter is used together with the latest LO and NLO parton density
sets FE%N(nf = 5) becomes negative in the low Q)*-region at small z. We spec-
ulate that the CSN scheme would always yield positive structure functions if
we could use parton density sets which fitted data with convolutions of LO
densities with O(a;) coefficient functions and NLO densities with zeroth order
coefficient functions. Unfortunately such densities are not available.

To summarize the main points we have implemented two variable flavor
number schemes for bottom quark electroproduction in NNLO and compared
them with NLO FOPT results. The schemes differ in the way mass factoriza-
tion is implemented. In the CSN scheme this is done with respect to the full
heavy and light quark structure functions at finite Q*. In the BMSN scheme
the mass factorization is only applied to the coefficient functions in the large ()?
limit. Both schemes require four-flavor and five-flavor parton densities which
satisfy discontinuous NNLO matching conditions at a scale p = mj;. We have
constructed these densities using our own evolution code [8]. The schemes
also require matching conditions on the coefficient functions which are imple-
mented in this paper. Note that we have also removed the dangerous terms in
In*(Q*/m}) from the Compton contributions so that both FGN(ny; = 5) and
FEMN(ny = 5) are collinear safe. As in [6] we have done this in a way which is
consistent with our study of inclusive quantities by implementing a cut A on
the mass of the b— b pair. We stress that any ZM-VFNS bottom quark density
description of F;; must use collinear safe definitions. This is not required in
the fixed order perturbation theory approach given by FMXACT(nf =4) in [1]
for moderate ()?-values.

Finally we made a careful analysis of the threshold behaviors of FZ%SN(nf =
5) and FM5N(ny = 5). In order to achieve the required cancellations at the
scale ¢ = my so that they both become equal to FLbXACT(nf = 4) one must be
very careful to combine terms with the same order in the expansion in a,. The
approximation we made in this paper, of using NLO splitting functions in place
of NNLO splitting functions, was sufficient for our purposes. We successfully
implemented the required cancellations near threshold and the corresponding
limits at large scales came out naturally. Inconsistent sets of parton densities
automatically spoil these cancelations. Since there are only minor differences
between the CSN, BMSN and NLO FOPT predictions it is clear that the use
of variable flavor number schemes for bottom quark production is not required

for the analysis of HERA data. However the ZM-VFNS description is clearly

inadequate at small Q2.
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Chapter 6

Variable flavor number schemes versus fixed
order perturbation theory for charm quark
electroproduction



6.1 Introduction

Electromagnetic interactions have long been used to study both hadronic
structure and strong interaction dynamics. Examples include deep inelas-
tic lepton-nucleon scattering, hadroproduction of lepton pairs, the produc-
tion of photons with large transverse momenta, and various photoproduction
processes involving scattering of real or very low mass virtual photons from
hadrons. In particular, heavy quark production in deep inelastic electron-
proton scattering is calculable in QCD and provides information on the glu-
onic content of the proton which is complementary to that obtained in direct
photon production or structure function scaling violation measurements. In
addition, the scale of the hard scattering may be large relative to the mass of
the charm quark, thus allowing one to study whether and when to treat the
charm quark as a massless parton. It is this second aspect we wish to examine
further in this paper.

The photon-gluon fusion mechanism is the simplest description of charmed
quark electroproduction so that their production is assumed extrinsic, and
their mass m, is retained throughout. We call this description fixed order
perturbation theory (FOPT). It depends on a three-flavor set of parton den-
sities for the u, d, and s quarks together with a corresponding gluon density.
Calculations for rates and single particle inclusive distributions are available
to next-to-leading order (NLO) in [1]. These calculations were later redone to
cover fully differential production [2], and decays into hadronic or semileptonic
final states [3]. This framework generally provides a very good description of
the ZEUS [4] and H1 data [5] on the differential distributions for D**(2010)
electroproduction. Updated analyses now exist from H1 [6] and ZEUS [T7].
The ZEUS data [7] now extend up to Q% ~ 1000 GeV?. Since the FOPT
results in NLO are very stable under scale changes it has been advocated that
a three-flavor description should be the best one to fit the data [8, 9]. This is
the reason that the GRV9S8 leading order (LO) and NLO density sets [10] only
contain three flavors.

Other descriptions of charm quark electroproduction have been used.
One, which describes the charm quark as a massless parton density c(z, u?),
with the boundary condition ¢(z, u*) = 0 for u < m., is expected to be more
appropriate at large Q?. This scheme has generally been used by groups which
fitted parton densities to data and is called the zero-mass variable flavor num-
ber scheme (ZM-VFNS). The transition from a three-flavor parton density
set to a four-flavor set can be made on purely theoretical grounds by evalu-
ating appropriate massive and massless operator matrix elements containing
heavy quark loops in the operator product expansion and then absorbing the
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terms containing In'(Q?/m?) into the definition of four-flavor parton densities
[11], [12]. The resummation of the above logarithms is incorporated into the
boundary conditions on the c—quark density as well as the other four-flavor
quark and gluon densities. In particular if one does this at the scale where
©? = Q* = m? then all the logarithmic terms in the operator matrix elements
vanish and only the non-logarithmic terms are included in the boundary con-
ditions. Since a charm quark density is a parton model concept the QCD
perturbation series then starts with o coefficient functions. The lowest order
photon-gluon fusion reaction then has O(a;) coefficient functions. The NLO
corrections contain O(a?) coefficient functions. When the resulting four-flavor
parton densities are convolved with the massless coefficient functions in [13]
one obtains predictions for the charm content in the deep inelastic structure
functions. One expects this four-flavor ZM-VFNS description to be better
than the FOPT one at large scales since it resums the terms in In*(Q?/m?).

Another approach, which is even more ambitious, is a scheme designed to
interpolate between the FOPT result at low scales and the ZM-VFNS result
at large scales. In these variable flavor number schemes (VFNS) one hopes to
provide a unified framework for all scales. Unfortunately there is no unique
prescription for a VFNS and several have been constructed. The differences
between them are due to two inputs. The first is the mass factorization proce-
dure carried out before the large logarithms can be resummed, namely should
one retain massive or massless charmed quarks in the coefficient functions,
which are convolved with either the three-flavor or four-flavor parton densi-
ties. The second is the matching condition imposed on the charmed quark
density, namely how does it vanish in the threshold region of the electropro-
duction process, where the partonic subenergy is approximately 4m? . Variable
flavor number schemes are presently available to O(«;) in [14, 15, 16, 17] and
to O(a?) in [18, 19], called BMSN and CSN, respectively, in this paper. The
latter schemes require the parton densities provided in [12]. Review articles
and discussions about VFNS schemes are available in [20, 21, 22, 23].

In Sec. II we give a short discussion of the BMSN and CSN descriptions
for charmed quark electroproduction and then compare theoretical predictions

with differential distribution data from H1 [6] and ZEUS [4, 7].
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6.2 Comparison

The reaction under consideration is heavy quark () production via neutral-
current electron-proton scattering

e (I)+ P(p) — e (I'N+Q(pr) + X. (6.2.1)

We concentrate on the case where () is a charm quark with mass m. = 1.4
GeV. When the momentum transfer squared Q* = —¢* > 0 (¢ = (= 1') is
not too large, Q* < M2, the contribution from virtual Z-boson exchange is
small compared to that of virtual-photon exchange. For example, using the
leading order Monte Carlo program AROMA [24], at ? = 1000 GeV?* we find
the Z-boson exchange contribution is a factor of 100 smaller than the photon
exchange contribution.

The charm quark cross section can be written in terms of the structure
functions Fj(z, Q% m?) and Ff(z,Q?* m?) as follows:

C C

d;jjlz?? - ?542 {1+ (1 =y 1F5(2, Q7 md) — v Fi (. Q% mD)} . (6:22)

where © = Q?/2p - q and y = p- q/p - | are the usual Bjorken scaling variables
and « is the electromagnetic coupling. The scaling variables are related to
the square of the center-of-momentum energy of the electron-proton system
S = (14 p)?* via zyS = Q*. The total cross section is given by [25]

1 yS—4am? d20-
o= dr/ d 2(7) 6.2.3
4m2 /S Y m2y? /(1—y) < dydQ)? ( )

where m, is the electron mass. In deriving Eq. (2.2) one integrates over the
azimuthal angle between the plane containing the incoming and outgoing elec-
trons and the plane containing the incoming proton and the outgoing charm

quark.

Experimentally it is the decay products of charmed hadrons that are ob-
served. The H1 and ZEUS groups measure D**(2010) production. We assume
a Peterson et al. [26] fragmentation function to model the nonperturbative
transition from charmed quark to hadron. The cross section for D* produc-
tion is then obtained by convolving the charm quark cross section Eq. (2.3)
with the fragmentation function

B N
2l —1/z —¢/(1 —2)]?

D(z) (6.2.4)

136



where N is fixed such that D(z) is normalized to unity once the parameter
e = 0.035 [27] is fixed. The normalization of the cross section is then given
by the charm fragmentation probability which we take as P(¢ — D*) = 0.235
[28].

The H1 collaboration has recently [6] measured D** production for 1 <
Q? < 100 GeV? and 0.05 < y < 0.7 and quote a cross section in the region
1.5 < pp(D*) < 15 GeV and |n(D*)| < 1.5 of

o(etp — et D*EX) = 8.37 4+ 0.41(stat.) T aa(syst.) nb. (6.2.5)

The data came from the 1996-97 run with proton energy 820 GeV and positron
energy 27.5 GeV (18.6 pb™!).

The ZEUS collaboration has recently [7] measured D** production for
Q? > 10 GeV? and 0.04 < y < 0.95 and quote a cross section in the region
L5 < pr(D*) < 15 GeV and |p(D*)| < 1.5 of

o(etp = e"D**X) = 2.33 £ 0.12(stat.) 757 (syst.) nb. (6.2.6)

The data came partly from the 1999-2000 run with proton energy 920 GeV
(45.0 pb™!) and partly from the 1995-1997 run with proton energy 820 GeV
(37.6 pb™!). In both cases the positron beam energy was 27.6 GeV. They
demonstrated [7] that the predictions from HVQDIS [3], which is based on
FOPT, agree with their D** electroproduction data up to the highest mea-
sured value of Q% ~ 1350 GeV>.

Previously in [4] they presented the 1996-1997 positron production data
(37 pb™1) for D** in the range 1 < Q* < 600 GeV* and 0.02 < y < 0.7 in
the same kinematic range 1.5 < pr(D*) < 15 GeV and |n(D*)| < 1.5 with the
cross section

o(etp — et D*EX) = 8.31 4+ 0.31(stat.) 520 (syst.) nb. (6.2.7)

Therein [4] they also concluded that the HVQDIS [3] results agree with their
data, apart from a distortion of the pseudo-rapidity distribution. This was
attributed to a beam drag effect [29], which was estimated by Monte Carlo
[30]. Still FOPT seemed to be the best model to fit their data.

The BMSN [18] and CSN [19] variable flavor number schemes were con-
structed so that the charm quark structure functions Fj(z,Q* mZ, u?) and
Ff(z,Q* m2, u*) are numerically equal to the corresponding FOPT results
at the scale p? = m? = Q? = 1.96 GeV?, so the differences between the
them could be monitored at higher scales. For this reason we chose the scale
@ =m2+2Q*(1—m?/Q*)? and set the charm density to zero when p* < m2.
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Also we used the exact solution of the differential equation for the QCD run-
ning coupling (a;) as well as an electromagnetic running coupling («). The
QCD expansion was truncated at a?. Therefore we were careful to construct
the structure functions in the FOPT, BMSN and CSN schemes according to
the symbolic formula

F(z, Q% m?) f(LO)® C(LO)
as[f(NLO) @ C(LO) + f(LO) @ C(NLO)]
Q[f(LO)® C(NNLO) + f(NLO) ® C(NLO)

FINNLO) ® C(LO)], (6.2.8)

+ + +

where the @ symbol refers to the convolution integral and the parton densities
f and coefficient functions C' are taken in either LO, NLO or next-to-next-to-
leading order (NNLO) perturbation theory. Note that this result is different
from the usual FOPT prescription which is based on expressions like

F(z,Q*m?) = [f(LO)+ a,f(NLO)+ o2f(NNLO)]
® [C(LO)+ a;C(NLO)+ «2C(NNLO)]. (6.2.9)

These prescriptions retain terms which are even higher order in . Normally
it does not matter if such terms are retained because they are numerically
unimportant at large )?. However such terms are numerically significant at
small ? and ruin the cancellations among the various terms in our formulae
for the structure functions in the three schemes with the result that they do
not agree numerically at * = p? = m?. Therefore we have to use Eq. (2.8)
and not Eq. (2.9). Even our FOPT (extrinsic) expression, called EXACT
in this paper, only retains the second and third sets of terms in Eq. (2.8)
and agrees with the corresponding results from the (appropriately modified)
HVQDIS code.

The difference between the BMSN and CSN schemes is that the former
has m. = 0 in the heavy quark coefficient functions while the latter retains
terms containing m.. We refer the reader to [19] for more details, in particular
the definition of the collinear safe inclusive structure functions and the contri-
butions which are incorporated into the light mass (u, d, s) contributions to the
coefficient functions. Our previous theoretical results showed that differences
between the EXACT, BMSN and CSN schemes in LO perturbation theory
diminish substantially in NLO perturbation theory. Such differences are more
apparent for b-quark electroproduction in [31] but there are no events yet.

The aim of this paper is to compare our results with the data. Since there
are no VENS schemes available for differential distributions in the transverse
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momentum and rapidity of the D* meson in O(a?) we make the assumption
that the experimental acceptances do not differ much between these schemes
and FOPT. We have therefore recalculated the experimental acceptances from
the HVQDIS program with the above scale choice, running coupling constant
and GRV98 [10] three-flavor parton density set. This is appropriate for the
FOPT result, which we called EXACT in our papers on the BMSN and CSN
schemes. Our acceptances in ()? are slightly modified from those used by
the Collaborations. The acceptances in )?, from integrating Eq. (2.2) over
0.04 <y < 0.95 005 <y < 0.7, or 0.02 < y < 0.7 are nearly identical,
so we do not distinguish between them. The corresponding acceptances in z,
however, from integrating Eq. (2.2) over 10 < Q% < 1350 or 1 < Q* < 600 and
the corresponding y ranges are different and we distinguish between them.
We start with the recent data from the Osaka meeting [6, 7]. The results
for the ratio o(cuts)/o(no cuts) are presented in Figs. 6.1 and 6.2 plotted
versus log,,Q* and log,,z respectively. These plots demonstrate the large
corrections necessary to include the experimental acceptances. The corrections
were applied to the corresponding differential cross sections calculated from
the structure functions given in the CSN [19] and BMSN [18] papers. Here we
used our own set of densities [12] which are based on the three-flavor GRV98
densities at scales below p = m., but which incorporate the discontinuity
across the c—flavor threshold at g = m. to define a four-flavor set both in
O(as,) and in O(a?) together with their subsequent evolution to higher scales
with NLO splitting functions.

The resulting differential cross sections in log,,()? are compared with the
H1 and ZEUS data in Figs. 6.3 and 6.4. We see from Fig. 6.3 that the FOPT
is a good fit to the data at large Q*. This is in agreement with the conclusions
of the ZEUS collaboration in [7]. It is difficult to distinguish the BMSN and
CSN results from the FOPT ones because there is only a 4% difference even
at this large Q2. Clearly it will take a substantial increase in the number
of events to distinguish between the schemes at large Q%. All we can say at
present is that the terms containing powers of In(Q*/m?) do not seem to lead
to different predictions.

One can see from the semi-logarithmic plot in Fig. 6.4 that all curves
meet at Q? = m? = 1.96 GeV?, which is expected from the construction of the
BMSN and CSN schemes. There are differences between the three schemes
in the region of small )%, however the currently available data is unable to
resolve them. We understand that the events with Q% < 10 GeV? and with
Q* > 10 GeV? are measured in different regions of the ZEUS detector and the
events accumulated in 1999-2000 in the former region have not been analyzed.
Note also that the bin widths in this region are not the same. More data for
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small ? would clearly be very useful.

The resulting differential cross sections in log,,z are compared with the
new ZEUS data [7] in Figs. 6.5 and 6.6. We see from Fig. 6.5 that there is
good agreement over a wide range in x. The semi-logarithmic plot in Fig. 6.6
shows a small disagreement between the FOPT theory result and the data
in the region z ~ 1073. However the normalization is determined mainly by
the magnitude of differential cross section at the lowest measured point in ()?,
which is precisely where additional data is required.

Integrations over the theoretical results displayed in Figs. 6.3 - 6.6 for
10 < Q? < 1350 GeV? and 0.04 < y < 0.95 yield 2.86 nb, 2.51 nb and 2.48 nb
for the FOPT, BMSN and CSN schemes respectively. The latter two results
are within the error bars of the experimental result in Eq. (2.6) while the
FOPT result is slightly higher.

The previous published ZEUS data in [4] had different cuts in Q% and y,
namely 1 < Q% < 600 GeV* and 0.02 < y < 0.7 which affect the normalization
of the corresponding x distribution. Therefore we reran the acceptance in
log,ox from the HVQDIS program and it is shown in Fig. 6.7. We then applied
the same acceptance to the other programs. The BMSN and CSN results
between 1 < Q? < 1.96 GeV? are set equal to the EXACT result. Our
results are compared to the data in Figs. 6.8 and 6.9. The overall shape
and normalization are well described. Integration over the results in Fig. 6.8
yield 9.29 nb, 8.43 nb and 8.55 nb for the FOPT, BMSN and CSN schemes
respectively compared to the experimental results in Eq. (2.5) and (2.7).

We have run our computer codes in other ranges of the variables log;,Q?
and log,,z to find where differences between the three schemes might be mea-
surable. As an illustration we show in Fig. 6.10 a contour plot of the ratio of
the BMSN double differential cross section divided by the FOPT double dif-
ferential cross section plotted versus these variables. Contour lines are drawn
where this ratio is 1, 1.5, 2, 2.5 and 3. The ratio increases as ()? increases
for fixed z. Note that no acceptance corrections in py or  have been applied
to the ratio in this figure. One sees that the region of large Q* and large
must be probed to find significant differences between FOPT and the variable
flavor number schemes. Roughly speaking one needs x > 0.2 and Q* > 100
GeV*. In fact Fig. 6.5 in [32], which only shows the Q? dependence of the
structure function Fy(z,Q* m?) at fixed values of z, already illustrates the
kind of differences one can expect in this region.

Finally we remark that as far as the FOPT result is concerned the stan-
dard version of HVQDIS uses the scale p? = Q? 4+ 4m?. This increases the
scale in the running coupling. Also it uses the second and third lines of Eq.
(2.9) with all parton densities set to their three flavor NLO values. These
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standard settings alter slightly the above acceptance curves. The net effect of
both changes is approximately a ten percent reduction of the FOPT results
(usgin GRV98) for the differential distribution in log,,@?* at the smallest Q?,
which is within the present experimental errors.

To summarize we have made a first comparison between the FOPT, BMSN
and CSN descriptions for D** electroproduction. We have observed that the
three schemes give nearly identical predictions up to the highest Q* measured.
It is therefore difficult to distinguish between the various schemes on the basis
of a data comparison. The small scale dependence of the FOPT result indicates
that there is no sign that the terms containing powers of In(Q*/m?) destroy
the convergence of the QCD perturbation expansion and that one is forced to
switch to a variable flavor number scheme like the BMSN or CSN. In fact they
all provide a good description of the data for the differential distributions in Q*
and z. At small Q* there is a chance to distinguish between the schemes (say
for 2 < Q% < 20 in GeV?). The comparisons in the case of the z-distributions
are not conclusive due to the correlations with the points in small Q2. It will
be interesting to see what happens when more events are collected so that the
error bars are reduced.

We would like to acknowledge discussions with W. L. van Neerven on
the results presented above, and thank José Repond for discussions about the
ZFEUS data and comments on the text. The work of A. Chuvakin and J.
Smith was supported in part by the National Science Foundation Contract
PHY-9722101. The work of B. Harris was supported by the U.S. Department
of Energy, High Energy Physics Division, under contract W-31-109-Eng-38.
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Chapter 7

Conclusions

In this dissertation we illustrated the importance of constructing variable
flavor number schemes for a consistent theoretical analysis of DIS data on both
inclusive production and single-particle charm production. VFNS descriptions
for charm electroproduction should turn out to be more accurate than fixed
flavor scheme descriptions for moderately high values of ? and for a wide
range in .

While there is still no conclusive evidence which particular VFNS scheme
provides the most accurate description of experimental data it seems evident
that adding higher order terms to the perturbative expansion increases the
accuracy and stability of the theoretical results. Hence it is clear that the
VFNS descriptions described in this thesis are based on stronger theoreti-
cal foundations than other VFNS schemes presently available. Our schemes
are constructed in higher order that the others so they have less dependence
on arbitrary parameters, such as factorization and renormalization scales and
heavy quark masses. They use all currently available higher order corrections
to both splitting functions and coefficient functions. They have a compatible
set of numerical programs for evolving the PDFs and calculating the structure
functions. The computer programs developed as part of my dissertation re-
search provide simple and user-friendly methods to compute cross-sections for
DIS processes.
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